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We develop and test an algorithmic approach to the boundary design of elastic
structures. The goal of our approach is two-fold: first, to develop a method which
allows one to rapidly solve the two-dimensional Leatjuations in arbitrary domains
and compute, for example, the stresses, and second, to develop a systematic way of
modifying the design to optimize chosen properties. At the core, our approach relies
on two distinct steps. Given a design, we first apply an explicit jump immersed
interface method to compute the stresses for a given design shape. We then use a
narrow band level set method to perturb this shape and progress towards an improved
design. The equations of 2D linear elastostatics in the displacement formulation on
arbitrary domains are solved quickly by domain embedding and the use of fast
elastostatic solvers. This effectively reduces the dimensionality of the problem by
one. Once the stresses are found, the level set method, which represents the design
structure through an embedded implicit function, is used in the second step to alter
the shape, with velocities depending on the stresses in the current design. Criteria
are provided for advancing the shape in an appropriate direction and for correcting
the evolving shape when given constraints are violateg 2000 Academic Press

Key Words:self design of elastic structures; level set method; explicit jump im-
mersed interface method; immersed interface method; linear elastostatics.

1. INTRODUCTION

The goal of this paper is to advance methodology for computing linear elastosta
in complex geometries and to develop techniques for computing improved designs u
user-supplied constraints. We present a combined level set and finite difference techr
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FIG. 1. Bending of the initial design of a cantilever with 105 circular holes. Parts of the left boundary &
clamped; on the rest of the boundary, including all holes, the traction is specified with nonzero loading ¢
small portion about the center of the right boundary. The bending is beyond the regime of small displacer
elastostatics and chosen only to illustrate the behavior. The larger rectangle is the computational domain v
320x 160 grid indicated in the lower left corner.

for constructing efficient designs which satisfy certain design criteria. The explicit jur
immersed interface method is used to compute the solution of the elliptic problemin com
geometries, and the narrow band level set method is used to track the motion of the de
boundaries under complex speed functions in the presence of topological changes.
application setting for these algorithms is the boundary design of a loaded elastic struc
with short structural boundary design. The design changes are based on the weigh
stresses, and boundaries are moved, removed, or introduced based on these quantitie

By way of illustration, consider a clamped and loaded cantilever (see Fig. 1). Supp
our goal is to remove as much material as possible from the original shape, while
making sure that the compliance (defined as the yield under the load) or the maxi
stress in the structure stays below a certain threshold value. We can start with the ori
perforated structure, compute the stress, and then try to add and remove material in «
to reduce the weight in such a way that the compliance or stress does not rise above a
user-prescribed level (see Fig. 2). Different designs (that is, newly introduced, removec
reshaped holes) will give different compliance and stresses in the design. Our approact
devise a systematic way to add and remove material. This requires an accurate technic
compute the stresses for a given multiply connected domain and an accurate techr
to remove or reshape existing boundaries and to introduce new ones. The level set me
is instrumental in the addition and subtraction of material; the explicit jump immers
interface method is the key to computing the stress in arbitrary domains. The impro
cantilever that is designed by this procedure looks like Fig. 35.

As a general outline, the algorithmic approach presented in this paper is as follows
the first step, the explicit jump immersed interface method is applied to the equation
2D linear elastostatics in the displacement formulation (from now on referred to as
Lamé equations), and problems on arbitrary domains are solved quickly and without m
generation by domain embedding and the use of fast elastostatic solvers. This effect
reduces the dimensionality of the problem by one. In the second step, the given desi
modified. The level set method, which represents the design structure through an embe
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FIG. 2. Stress contours on the design from Fig. 1.

implicit function, is used to alter the shape, with velocities depending on the stresse
the current design. These stresses can be found from the displacements that were fol
the first step. Criteria are provided for advancing the shape in an appropriate direction
for correcting the evolving shape when given constraints are violated. The two steps
iterated until no further improvement can be made.

The benefit of using the explicit jump immersed interface method is to avoid me
generation and the use of fast elastostatic solvers; the benefit of using a level set mett
the elegant handling of changes in topology such as the merging of holes or the filling i
the or holes with large stresses around them.

The application of the algorithmic methodology presented in this paper is by no me
complete. Our techniques allow accurate and efficient computation of the linear ele
equations for arbitrary geometry and provide an approach to alter the design shape
systematic way to satisfy user-prescribed constraints. As such, the application falls
the category of constrained minimization problems. As with many such problems,
technique allows us to improve the objective, but cannot be guaranteed to find the gl
minimum. In particular, our criteria for perturbing the given design and searching for nea
trial shapes which both satisfy the constraint and contain less material is somewhat ad
we can neither prove that it converges nor guarantee that it extracts the global minirr
Nonetheless, it provides an appealing way to approach some of these problems.

2. BACKGROUND ON STRUCTURAL BOUNDARY DESIGN AND PREVIOUS WORK

One main approach to structural design for variable topologies is the methodaige-
nization[5, 6, 8]. The following summary is paraphrased from [3]: Homogenization extrac
homogeneous effective parameters from heterogeneous media. The effective propert
a composite material are defined as the homogenized coefficients of a fine mixture of ¢
phases. The difficult “layout” problem of material distribution is replaced by a much e:
ier “sizing” problem for the density and effective properties of a perforated compos
material obtained by cutting small holes in the original homogeneous material. Work in
mogenization has shown that at low volume fractions the optimal solutions for perfora
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plates in plane stress and bending, respectively, tend to those of least-weight trusse:
grillages (see [4, 7]).

From our point of view, the most important insight obtained by homogenization is tt
some objectives in the mathematical modeling of structural design are oversimplified
do not yield the intended results. The objective “to minimize a weighted sum of comy
ance and weight for a given load” results in designs with infinitesimal specially shay
pores in the material that make the structure not manufacturable and very sensitive to
ations in the loading. In practical situations, one would like the material to be compo:
of macroscopic solid and void regions, to allow for variations in the loading, to accol
for cost of manufacturing, etc. Homogenization can deal with these issues by penalize
of intermediate densities and postprocessing, but the attractive conceptual simplicity o
homogenization approach is lost for realistic requirements.

In the “evolutionary structural optimization” approach of Xie and Steven, [37], chang
in the size, shape, and topology of the structure are achieved by removing elements (us
refered to akard kill) from some fixed finite element discretization of a “ground structure
an initial large domain in which the final designed domaim|isiori known to be contained.
The weight reduction can be governed by the stress, stiffness, frequency, or buckling |
In the similar “reverse adaptivity” approach of Reynoktsal. [21], approximately fully
stressed structures are found by removing a fixed percentage of relatively understresse
terial. Reverse adaptivity refines finite element meshes near the boundary during the d«
procedure to reduce computational cost or increase resolution. Essentially, both evolu
ary structural optimization and reverse adaptivity are homotopy methods, the differe
(apart from the adaptive mesh refinement in reverse adaptivity) is that the parameter
percentage of stress or a percentage of weight.

Another related approach is the “bubble method” of Eschenstadr[12, 13], where the
topology is modified in a prescribed fashion by placing holes of known shape at optir
positions in the structure, based on so-called characteristic functions of the stresses, st
and displacements. From this method we have gathered the importance of letting the d«
for a given topology “settle into a good shape” before further changing the topology.

Sharp boundary-based methods for structural design are a more direct approach
homogenization. For example, they do not require the reformulation of the constrail
problem via Lagrange multipliers, and in general they allow the modeler more explicitly
account for any features she wants to incorporate into the design. The possible complica
make the notion of proving the optimality of the design hopeless, but it may be argued
for example, in [21]) that for many applications, optimality is not as useful a concept
improvement, and we will thus only make claims for our own method regarding the lat
As in [21], “we improve the design by making more efficient use of the material.”

3. OVERVIEW OF WORK AND ALGORITHMIC APPROACH

Adopting the principal idea of redesigning the structure based on the distribution
stresses in the current design to find fully stressed structures, we focus on the resoluti
the boundaries. The level set method [19], introduced by Osher and Sethian, is designe
moving boundaries with changes in topology, and relies in part on the theory and numeric
curve evolution developed by Sethian in [24—26]. In our case, the velocity of this bound
motion depends on the stress on the boundary. On arbitrary domains we obtain the str
by solving the linear elastostatic equations in the displacement formulation and different
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the displacements using the explicit jump immersed interface method (see [36]), a fi
difference technique on uniform grids after Li and LeVeque’s immersed interface metl
(IIm, [14]) that is capable of dealing with non-grid-aligned boundaries with the san
truncation error as interior differences. The biggest benefit of our approach compare
the earlier work [21, 37] is that it is easier to add material (with some subgrid resolution
hole boundaries with high stress than on a triangulated finite element mesh. In partic
this allows us to start with designs that have holes cut “in the wrong place,” and see tl
holes disappear.

In the elliptic portion of structural boundary design, mesh generation for the des
domains can become the major cost. We avoid the mesh generation step by sepa
the representation of the boundary from the uniform computational grid. To keep the «
structures simple and in order to use fast elastostatic solvers on rectangular domains [3¢
problem is posed on a larger, rectangular doniimith zero normal boundary conditions.
The boundary conditions on the original boundary are rewritten as jump conditions
introduce discontinuities in the displacements indg’Rd®ur choice of jump and boundary
conditions forces the extended solution to vanish on the extension, but to match the sol
inside the structure. On the level of linear algebra, a Schur complement (as previously
e.g.,in[15, 16, 36]) reduces the number of variables from proportional to the grid point
proportional to the length of the boundary normalized by the mesh width.

In the design portion of structural boundary design, changes in topology provide
greatest challenge. The structure boundaries are viewed as moving; holes may merge
each other or the exterior or may have to be newly created. The level set method repre
the boundaries implicitly as the zero level curve of a grid function that is essentially
distance from the boundary. Boundary motion and merging, as well as the introduc
of new holes, are all performed using this grid function. This approach also allows
detection of regions that have become separated from the nontrivial boundary condif
and have to be dropped from the computations. For efficiency reasons, we use the ne
band level set method (see [1]).

We considered two options for the boundary velocity. The firstis derived from the stres:
the boundaries and inside the structure. The second is based on the stress on the bour
only, and then extends the velocity onto the grid by constant values in the normal direct
We use the second option because the first does not allow for addition of material and bec
in our experience tended to give undesirable corners in the boundary geometry. In addi
the second option theoretically maintains a distance function from the zero contour.

In more detail, the elliptic aspects of structural boundary design are considere
Section 4 while the design aspects are treated in Section 5. To compute the stresse
derive jump conditionfrom given displacement boundary conditions in Section 4.1, ar
from given traction boundary conditions in Section 4.2. The separate treatment of boun
conditions serves only to illustrate the concepts; in the numerical examples in Sectic
different types of boundary conditions are given on the same component of a boundary
use a weighted least squares approach for derivative estimation (see Section 4.3) wh
similar to ideas in Li [15] and improve and implement the corrections for cross-derivati
(previously described in [36]) in Section 4.4. Derivative estimation and corrections are
the first time carried out to third order for the purpose of achieving &) truncation error
at all points, including points neighboring the boundary. Section 4.5 briefly describes
Schur-complement approach for embedded irregular domains and Section 4.6 summ:e
the ideas behind the fast elastostatic solver.
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In Section 5, we review the narrow band level set method for front propagation
Section 5.1 before going into its extensions (e.g., determination of the boundary ve
ity) to structural boundary design in Section 5.2. Some remarks concerning the exp
jump immersed interface method for varying geometries follow in Section 5.3.

We demonstrate second order convergence of the explicit jump immersed inter
method for elastostatics in Section 6.1. The third order approximations improve the
lutions to be less sensitive to changes in the boundary geometry. Second order convert
of the displacements gives first order convergence of the stresses. These are again ex
lated to the boundaries using a weighted least squares fit in order to find the front veloc
as required by the level set method.

In Section 6.2, we show that we can solve elastostatic problems in irregular regi
with the same? (N log N) efficiency that the fast solver exhibits for rectangular domain:
and that it is feasible to solve medium-sized problems of up to 1.6 million variables
workstations.

In the examples of structural boundary design in Section 6.3, the idea is to reduce
weight of the structure while keeping the compliance below a certain bound and achie
as uniform a stress distribution as possible in the structure, i.e., to find so fdliestressed
structures We can start from a ground structure like [21, 37], but any existing design m
be improved—or found to be unimprovable—with our approach. Three mechanisms al
changes in the size, shape and topology of the structure. We introduce new holes by cL
away material along contour lines of the von Mises stress. A homotopy parameter ce
the removal rate [37]) guides the choice of contour levels. The removal rate is a percen
of the maximum von Mises stress in the original design and is slowly increased accorc
to another parameter, the evolutionary rate, to remove material from the structure. We
move the boundaries using a level set method with velocities given from the stress or
boundaries and by extending these velocities from the boundaries by a constant value nc
to the boundaries, as suggested in [2]. The procedure stops when it cannot further dec
the weight of the structure without “constraint violation.” Alternatively, an observer me
want to choose the best design out of the sequence of designs.

4. FINITE DIFFERENCES FOR THE LAM E EQUATIONS IN GENERAL DOMAINS

Recall the two-dimensional Lagréquationsu = (u, v) are the displacements inand
y, respectively, and
vE
(1+v)1—-2v)
vE
(A+v)(1—2v)

(AU + Uyx + ny) - (Uxx + ny) = f in Q,

E
21+ v)

(Av + Uyy + vyy) — (Uxy +vyy) = fY iNQ.

21+ v)
HereE is the Young modulus; is the Poisson ratiqy = E/(2+ 2v) andx = vE/((1 +
v)(1— 2v) are the Lare  constantsf = (fY, f) are body forces, an® is an open,
connected, but not necessarily simply connected domain. We will also write Gunith

/(i + 1))

fu .
CAu+u = — in 2, 1
+ xx+ny L+ A ( )

fv .
CAv + Uxy + vyy = — in €. (2

Y
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Displacement boundary conditions are
u=u onlcaQ. 3)

Hereu = (u, v)" are given functions o'y, the part ofd<2, the boundary of2, where
displacements are given. Traction boundary conditions are

oc(wn=g onl,C . 4)

We assume that the coefficients, geometry, and boundary values are such that the pre
(1)—(4) has a unique solution.

Throughout, we consider second order centered finite difference discretizations fo
occurring derivatives. The explicit jump immersed interface method is used to treatirreg
boundaries. For details of this discretization of an elliptic equation we refer the readerto [

We embed? so that its closure is contained in the rectangland extendi andv by
zero on the open complement®@fin R, R\cl{Q2}. We will denote this open complement by
Q* and writeQ2~ for the original domairf2. The extended functionsandv are in general
discontinuous acrosK2, with nontrivial jumps in all derivatives that are determined by th
boundary conditions and derived belowglfs a function onR and« is a point ond2~,
the jump ofg atwx is

— i +y i -
[Ql@ =  lim qx™)— _lim  q(x7).

The explicit jump immersed interface method requires a complete set of independent |
conditions for all variables and their derivatives in the coordinate directions below the ol
of the discretization to achieve the same convergence rate that is obtained on rectang

4.1. Displacement Boundary Conditions

The jumps in displacements do not involve the differential geometry of the bounde
and can be written out immediately for Cartesian coordinates.
An extension olu andv by zero onR\cl{2}, whereR = [a, b] x [c, d], and defining

Fu_ —fU(u+21) inQ
B {o in R\cl{$}
Fo_ —f'/(u+2r) InQ

B {o in R\cl{$2}

yields the differential equation on the rectangl¢hat the explicit jump immersed interface
method works on,

CAU+ Uyx + vxy = ¥ in R\,
CAv 4 Ugy +vyy = f* in R\OQ

with boundary conditions

iw=u=0 onll3={xe{ab},ye[cd]} CIR, (5)
uy=v=0 onll3={ye{cd},xelab]}caR. (6)
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The fact thatu andv satisfy the same equation 2™ as inQ~ and the choice of these
particular “normal” boundary conditions @R is essential for the use of a fast solveri®n
AcrossI'y, the jump conditions are

[u=—-U only, (7)
[v]=—-v onTy, ®)
aMu oMu~ .
[axiawmi)] = “oxgym | = O0Loomm=12... ®)
oMy oMy~ .
{axiaym‘—i)} = _8xi8y<m—i>’ i=01..mm=12.... (20)

Alternatively, the equation and approximations of tangential derivatives may be use
derive jump conditions for second and higher derivatives as suggested in [36] and previo
in [15].

THEOREM1. WhenI'; = 9€2, the extension of u andby zero is the unique solution of
the extended problem on, Rhere u and satisfy the normal boundary conditiofts) and
(6) ond R, the elastostatic equatiorf$) and(2) in 2~ and inQ2*, and the jump conditions
(7Y+10). In other wordsthe restriction ta2~ of the solution of the extended problem solve
the original boundary value proble)—(3).

Proof. By design, the extended functionsandv satisfy the boundary conditions on
R, the jump conditions 02 and the differential equations @~ andQ™*. If any u and
v satisfy (9) and (10), this impliesf = uj = vf = v§ =--- = vj, = 0. This, together
with the facts thati andv satisfy (5) and (6) o R and satisfy the elastostatic equations
in Q* guarantee that andv vanish on*. But thenu* = v = 0. Together with this, (7)
and (8) imply thati— = uandv~ = v. But then the uniquenessefaindv on Q2 is exactly
the assumed uniqueness of the solution of the original boundary value probkem.

4.2. Traction Boundary Conditions

Different from displacement boundary conditions, traction boundary conditions are m
conveniently expressed in the local coordinates of the boundary, i.e., derivatives in
tangent and normal directions. The traction boundary condition couples the two Carte
displacement variables.

4.2.1. Jumps in Local Coordinates

Again the goal in this section is to get a complete set of jump conditions from the tract
boundary conditions upon extending the solution by zero.

For concreteness, we may think of (4) as realized in Cartesian coordinatesuEaen
(u, v) is the vector of displacements in thendy directionsg is the stress tensor expressec
in (X, y) coordinatesn = (ny, ny) is the inward normal to the boundary (given(ix y)
coordinates), angis a vector of surface forces applied at that boundary, also given )
coordinates.

We indicate the tangent to the boundarnythy (n,, —n;) so that(t, n) form a right-hand
system. The displacements in this coordinate systera arel - n andn = u - t. We think
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of gradients as row vectors, 8 = (Lu‘z ‘;:) and use the notation

& = V(U-nn=n"(Vu)n, (11)
= VUu-tHn=nT (Vul, (12)
& =V(u-nt=t"(Vun, (13)
n=Vu-tHt =t (Vu. (14)

We rewrite (4) in thestocal coordinateghat are implied by the geometry of the boundarn
and change with the boundary

( E < Zgn -‘Et‘i‘fln)_{_ Ev (én‘l"?t 0 >><l>_(g'n)
20+ v) \& +mn  2m A+vA-20)\ 0  &+n 0/ \gt)

From this we derive formulas for the normal derivatives of the displacements in terms
tangential derivatives.

Vv

b= — . (15)
—V
n = _gn - gh (16)
where
_ (14+v(d-2vg-n
g = E(1—v)
67 — _2(1+U)gt
E

Now we have a complete set of jump conditions, albeit some not yet in Cartesian ¢
dinates.

[ul = —-u" onTy, a7
[v] = —v™ onTy, (18)
[t = ~& =& + ;= onr (19)
[l = —ny =8"+ & only, (20)
[&] = —§ onIy, (21)
[m] =—n onTla. (22)
The second- and higher-order jumps,f], [uxy], . . ., [vyy,] are the same as in the displace-

ment case, (9) and (10) fan > 2. The derivations in Section 4.2.2 bring (19)—(22) into the
form required by the explicit jump immersed interface method.

4.2.2. Jumps in Cartesian Coordinates

Equations (11)—(14) can be used for coordinate transformations of jumps,

n' [ux] [Uy]) . [&n] [ﬂn])
(tT)({vx] A t)‘([m ()
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or, using the orthonormality ah, t),

(o )= o (v )

Observe that
<[§n] [nn]) _ <gé g”) i <1u‘,77t & )
[&] [md 0 O =& -0y
and get
_ § g = & ng
[U] = (my u)((o . ) + ( o _m)) (tl )
_ § 9\ (m st>)<n2>
[uy] = (ny t1)(<0 O) + ( P b )
_ & g = & >) <n1>
[vx] = (N2 tz)((o O) + ( Tt e 4 )
_ g g = & nz
[vy] = (2 @((0 O) 4 ( o _nt)) <t2 )

Putting it all together,

[u] = (—n1 t12> ne +Ng° 4+ nity @,

n1n2 - t1t2> ne + (Nt — Mot)ET + NinpG + Ntd”,

[vk] = (1 nong — tzh) ne + (Naty — NDET + N2 + nata§”,
( - t§> Ny 4+ N3g° + natad7,

where

Uy t
ne = (t1, t2) <vi y)(é) = tlzu; + tatouy, + tatioy +t22v;,
X
u, u, n
& = (b, tz)( * y)(é) = tiN1Uy + tNUy, + vy + taauy .

v vy

4.3. Weighted Least-Squares Grid-to-Interface Extrapolation
of Function and Derivative Values

The least-squares fit idea was used to second order in [15] for interfaces in orde
improve the stability to the immersed interface method in the presence of large jump
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the coefficient. Here, we describe it to third order and in the one-sided limit context
the explicit jump immersed interface method. It is a general method to impose bounc
conditions and jump conditions on nongrid-aligned boundaries and interfaces that is e
programmed and easily extended to three space dimensions.

4.3.1. Third-Order Weighted Least-Squares Fit

Figure 3 shows an annulus embedded in asquare. The annulus is not centered in the ¢
in order to avoid symmetry in the grid effects in later considerations. The heavy dot mark
intersection of a boundary with the mesh and the circles mark grid points inside the don
within distance from the boundary point that are used to extrapolate function and derivat
values from the grid to the boundary. The arrow points in the outward normal directior
the boundary, denoted by= (c, s). We denote the coordinates of the boundary—mes
intersection by(x,, Y.) and a generic marked grid point I, y;). Leth; = x; — x, and
K; = ¥j — Yo. TherestrictiorR selects the valudsr of a grid functionJ at the marked grid
points. The bicubic polynomig should ideally satisfyi; = p(xi, yj), wherep(xi, y;) =
Po + pihi + pzk,- + p3hi2 + pshi kj + p5k]-2 + pehf + p7hi2k,- + pgh; k]-2 + pgk-3, for each
of the marked grid points. We will discuss this interpolation in more detail in Section 4.3
Onn; > 10 grid points, this linear system is overdetermined. We use a least-square
and introduce weights that allow better approximation closer to the extrapolation point.
example, one could use; = (1+ cogxd;j/r))/2asin[15], where G< d;j = \/h|2—+k1.25r,
andr is the “radius of influence.” For these weights, due to the use of one-sided sten
we found that we need to use largethan Li does in [15]. To be able to use a smaller radiu
of influencer, we adjusted the weights;; = 1/(1 4+ dj /h).

The weighted least squares problem for the coefficienfsiefthen

n
m,j“Z wii oy (P(Xiy. Yioy) = uijy)®,
1=1

0.5 ’

/
ESatatess w0/ /

0.7F /
/ B L] 0.4[

0.6F 3\

=0.35

¥
=3
o

J
0.4F £

0.3F

0.2¢ 0.25

0.1

0 L L s L L f | 0.6 0.65 0.7 0.75 0.8 0.85 0.9
[ 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.8 1 X

a b

FIG. 3. In(a), we see an annulus embedded in a square and (b) shows a blowup of the same figure. The
dot marks an intersection of the annulus boundary with the mesh; the circles mark grid points inside the do
within distance from the boundary point. The arrow points in the outward direction normal to the boundary.
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wheren, is the number of marked points and the minimum is taken over all bicubic polyr
mials p. Letting? W = diag((wij ))[;) andP = [po, p1, - - ., Po] " and using they x 10
matrix M with rows corresponding to grid points, i.e., thike row

Mi = [ hig). ki), b2y, hiaykjay. Ky, b e Koy hio k) K]

we find that for a given grid functiod , the coefficients of the weighted least squares fit poly
nomial are given by = (MTW?M)~*MTW?RU. In the explicitjump immersed interface
framework, the grid functiotd is not known but has to satisfy jump conditions. These ca
be expressed conveniently using rows of the mairix= S(MTW2M)~IMTW?R, where
S=diag1,1,1,2 1,262, 2, 6). Thisis true becausgwas derived with origiriX,, V),

so function values and derivative valueslbfat the boundary point are approximated a:
follows:

U(Xa» Yo) = Po + O(h?),
Ux(Xe» Yo) = P1+ O(h),
Uy (Xe» Yo) = P2+ O(h%),

Uxx(Xa» Yo) = 2P + O(h?),
Uxy(Xe> Yao) = Pa+ O(h?),
Uyy(Xe Yo) = 2Ps + O(h?),
Uxxx(Xa» Yo) = 6ps + O(h),
Uxxy(Xa» Ya) = 2P7 + O(h),
Uxyy(Xe» Yo) = 2pg + O(h),
Uyyy(Xes Yo) = 6pg + O(h).

For example, a condition on the directional derivative normal to the boundary can be wri
interms oft D, + s D3, where(c, s) is the unit normal an®, andD; are the second and third
rows of D, respectively, which correspond to taking thendy derivatives ofJ at(X,, Ya).

4.3.2. Remarks on Interpolation

Lorentz [17] discusses analytic conditions under which quadratic interpolation on
points in 2D is possible; this is used in [36]. Similar limitations hold for third-order interp
lation on 10 points. We found it easiest to deal with this issue numerically, independent!
the number of points in the stencil. Whenewf W2M is singular or close to singular, we
know that the geometry results in a bad stencil and revert to a second-order weighted |
squares fit. If that fails also, we revert to first order. Since derivatives are needed to enf
traction boundary conditions, first order is the minimum that we need to be able to us
MTW?2M is singular even in that case, then a finer mesh is needed to resolve the geomr

4.4. Corrections for Laplacian and Cross Derivatives ta®(h?)

Consider the situation of an interfaCén the neighborhood of the poift;, y;) as seenin
Fig. 4. Similar to Peskin’s (first order) immersed boundary method, we consider the disc
tinuity along an interface as being “spread onto a grid.” The difference is that we are gui

2The notation diagvectoi indicates a square diagonal matrix with the vector on the diagonal.
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by

Ot
Y =Yjit+1

Lt Lot
:hl H hs

-~ -————
T =Ti-1 T =1 T =Ti41

FIG. 4. Interface and mesh geometry near a lattice pointy;). Five intersections of the interface and the
mesh affect the discretization of linear elastostatics for the g&iny;); they are labeled,, o, . . ., os.

by “sharpness,”i.e., to achieve the smallest possible influence stencil, and we want to acl
the highest possible order of the truncation error—tg@¢a?) for all terms that need to be
discretized in 2D linear elastostatics, extending the derivations in [36], which@g@re

4.4.1. The Laplacian

Asin [36], discontinuities alonfj, imposed adt1, o2, a3, a4, aNdas, lead to the following
corrections for the Laplacian &t;, y;):

UXi41, Yj) + UXi—1, Yj) +UXi, Yj+1) + Ui, Yj—1) — 4U(Xi, Yj)

Au(xi, yj) = e
1 S (hHM My 1 S (kH™[amu
_ﬁz m! om _ﬁz m | am
m=0 X Jdag m=0 y Jdag

3m

3 +ym [ am
iy {a—“] +O(h?).
y Jda

The only other grid point where the jumpsoatenter the discretization of the Laplacian is
the second neighboring grid poirtk; 41, y;):

UXi42, Yj) + Ui, Yj) +UXix1, Yi+1) + UKit1, Yj—1) — AU(Xi41, Yj)
h2

3 —

1 (hz)™[3™Mu 2

X g ), O
m=0 " X o3

Au(xi-‘rl’ yj) =
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Thisistrue in general: For the discretization of the Laplacian, every intersection of interf
and mesh only affects its nearest two grid neighbors.

4.4.2. Cross Derivatives

For the discretization afiy, = 82/3xdy, think of

UXi+1,Yj+1) —Ui-1,Yj+41)  Ui41,Yj-1) —U(Xi-1,Yj-1)
2h 2h

2 2h
1 UXi+1,Yj+1) —Ui41,Yj-1)  U(Xi—1,¥j+1) —U(Xi—1,¥j-1)

+ 2h 2h 2
-3 . +OMm).  (23)

Uxy(Xi, ¥j) =

In the case of smooth functions, we simply add the same terms, but in the presence «
interface, the difference approximations require different corrections. In the case illustr
in Fig. 4 we break the corrections into pieces:

3 _
UXi+1, Yj+1) —UXi—1, Yj4+1) 1 (hsH)™ {amU}
Ux(Xi, Yj+1) = - = —
2h 2h Z m! | ox™ ],

m=0
2 hd
+ = uXXX(XI ) y]+l) + O(hs)

2h 6
and
3 .
u(Xis1, Yj—1) —u(Xi—1, yj—1) 1 hy) [3m }
Ux(Xi, Yj-1) = ~ o
2h hmg m! | 9xm o
+— 2 3u (X )+ O(h?).
oh 6 XXX |7y] 1
Also,
2
Ux(Xi, YD) — Ux(Xi Y1) 1 G (kD™ [a™Hu
Uxy(Xi ¥j) = 2h _%Z ml [ 9xay™m
m=0
2
1 k+)m am+1 ’
?2:: m! {axaym} + o0,
Hence

U(Xi41, ¥j+1) —Ui-1, Yj+1)  UXi—1, Yj41) — U(Xi-1, Yj-1)

ny(xi ) Yj) =

4h2 4h2
—ii (kf m{am“u} ~ if: (k;)m{am“u}
2h &= mb |axaym],, 2h = mb [axoy™],,
_iimz)m {amu} _ii(ham {amu}
dhz &= ml [ox™], 4hzs= ml [9x™ ],

h h
+ 1_2Uxxx(xi Yidl) — 1_2uXXX(XI Y- + O(h2)~
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NOwW USeUyyx(Xi, Yj+1) = Uxxx(Xi, ¥j) + [Uxxxdas + O(h) and uyxx(Xi, ¥j—1) = Uxxx(Xi,
yj) + [Uxxx]az + O(h) and get

U(Xit1, ¥j+1) —UXi-1, ¥j+1)  U(Xig1, Yj-1) — U(Xi—1, ¥j-1)

ny(Xi s yj) =

4h? 4h?
i 2 k4 )m am+1 i 2 (kzr)m 8m+1u
2h &= m! ax gym aym|,, he= m [axoym],

(hp)™ [9™u _iimg)m amu
4h2 — m! axm o AnZe= mb [ox™m]

h 83u h [d3u )
1 [aﬂ - 1—2[37] + 0.

For the second term in (23), we find in a similar fashion

U(Xi11, ¥j+1) — Ui, Yj-1)  UXi—1, Y1) — U(Xi—1, ¥j-1)

ny(Xi s yj) = 4h2 4h2
2
1 hi)™ [ g™t h [9°
S L - I8 fom?).
2h m! [ dyaxm 12| 9x3
m=0 a3 as

Comparing with (23), intersectiam affects the second inner difference in the first term
o affects the outer difference in the first term, affects the outer difference in the seconc
term, a4 affects the outer difference in the first term, ardaffects the first inner difference
in the first term.

Averaging terms in (23) has the effect of not giving preference to eithextho y-
direction, and allows a uniform treatment for all intersections. Every intersection alw:
affects six grid points. The relative geometry of the six points depends only on whether
intersection occurs for a horizontal or vertical mesh line. The corrections are needed in
“inner differences” and two “outer differences.” The horizontal and vertical case each s
up into two cases, depending on which of the nearest grid neighbors of the intersectior
in Q. For example, interface—grid intersectiag affects the discretization df?/axdy
at the points(Xi 1, Yj-1), Xi+1, ¥j)s Ki+1, Yj+1), (X, Yj—0) (%, ¥j), and (%, yj+1), and
intersection, affects the discretization @?/dxdy at the points(x;_1, Yi)s (Xi—1, Yj+1),
Xis ¥i), (X, Vi), Xigs, Y)), and(Xi41, Yj41)-

Remark 4.1. Inthe case that an intersection coincides with a grid point, this point shot
be thought of as belonging @~ or Q*, with intersections chosen accordingly.

Remark 4.2. Through our implementation we have found that the solutions may depe
more smoothly on the geometry if we change the equations for exterior grid neighbor
the boundary from “corrected linear elastostatics” to “fix the value to zero.” To be able
use the fast solver from [34], this has to be implemented as a perturbation of the stan
stencil as described in [36].

4.5. Finding the Displacements Using an Elastostatic Solver

Recall that boundary conditions @S2 are realized through jump conditions insige
If the jumps were known, only the right-hand side of the system of linear elastostatics
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R would need to be modified, according to the formulas in Section 4.4. To take advant
of this fact the unknown jumps at the intersections of boundaries and mesh are introdt
as auxiliary variables. The jump conditions (c.f. Sections 4.1 and 4.2) are discretized b:
on grid values of the displacements. For known grid functidns (UT, VT)T, the jumps
can be found simply by appropriately differencing the grid functions (c.f. Section 4.
Symbolically, the system is thus

A v\ U\ (R

(6 1)G)-()
HereU denotes the vector of stacked grid functithendV, J is the vector of jumpsAis
the matrix for the discretization of linear elastostatics by centered differences with nor
boundary conditions, (5) and (6) dR, ¥ is the matrix that distributes the jumps to the
equations with appropriate coefficients (Section 4DHakes appropriate finite differences
on the grid functions (Sections 4.3, 4.1, 4.2), anslan appropriately sized identity matrix.
The first row in the above system discretizes the differential equatid® tme second row
is the discretization of the jump conditions. Given jumps correspond to zero rdwsimd

nonzero entries on the right-hand sigle
EliminatingU from the system using

U=AYF —w)), (24)
we find a system for the jumps,
DA Y(F, — W) +J=Fy
that is,
(I —DA NI =F, - DA 'F,. (25)

This Schur complement for the jumps is solved iteratively with GMRES [23] or BICGSTA
[32], conjugate gradient methods for nonsymmetric matrices. An iterative method is nee
becauseA~1! is not known, but it can be applied rapidly @(nlogn) using a fast elasto-
static solver [34]. To make efficient use of the solver, the number of mesh points in e
direction (after reflection, see [34]) should be a power of 2. Once the jumps are kno
the displacement vectds is found applying the fast elastostatic solver one more time
evaluate (24).

Remark 4.3. This is the application of Schur-complement methods for Poisson pra
lems on irregular domains from [36] (based on earlier work by BudAtes. [9] and the
capacitance matrix method by Proskurowski and Widlund [20], also used by Yang [38]
the elastostatic equations.

4.6. The Idea of the Fast Elastostatic Solver

The fast solver that appliea~! in (25) requiresO(N log N) operations to solve the
elastostatic equations (1), (2) on a rectangle with normal boundary conditions, (5)—(6
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is based on the formulas for periodic boundary conditions.d=sr0, 1 < k < N; and
1<m< Ny butkm> 1,

—u —
- dk,ka,m - bk,ka,m 2

km = h*, 26

" ak,mdk,m - bl%,m ( )
i ak.ml:_ﬁm_bkmF_Em 2

Vkm = : - —h?, 27
k,m a.k_mdk,m — blim ( )

whereN; and N, are the numbers of grid points in the horizontal and vertical directior
bars on capitalized variables indicate the two-dimensional Fourier transform and

2nk—-1 2r(m—1
am=—-4c—2+4+2(c+1) cos%) + ZCCOSM,
1 2
2r(k — 1 27 (m —
bxm = —sin ( )sin (m 1),
' N1 N2
2r(k — 1 2r(m—1
dk,mz—4c—2+2ccos%+2(c+l)cosu.
1 2

Due to the periodic boundary conditions we have to require that each component of
right-hand side sum to zero, and after that the solution is unique only up to two conste
The problem with normal boundary conditions is solved using the solution for perio
boundary conditions on a larger problem that results from reflecting the right-hand sid
follows:

fu  fv Uy ui

ban s “nd "al

This reflection naturally satisfies the condition that each component of the right-hand
has to sum to zero. The undetermined constants arising from the solution of the peri
problem are both setto zero in order to match the displacement boundary conditions. Fir
the solution of the problem with normal boundary conditions is just the upper left block
the solution of the problem with periodic boundary conditions. A careful implementati
[35] requires a sequence of one-dimensional FFTs on appropriately once-reflected (dou
data structures and thus avoids the quadrupling described in [34].
For further details of the fast solver we refer to [34].

5. STRUCTURAL BOUNDARY DESIGN

So far, we have discussed techniques for computing the stresses given a particular d
configuration. Our goal is to find the design that minimizes the total amount of mate
and keeps the compliance below a certain value, subject to loading and clamping bour
conditions. This is a constrained minimization problem; the constraint is the compliar
and the goal is to minimize the amount of material used in the design.
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In many situations the solution of such a problem is not unique. An additional problen
that there may be many local minima, designs for which any small perturbation that satis
the constraint require more material, yet the given shape is not the global minimum.

Our approach is an evolutionary one; see, for example, [37]. The principal idea is
remove material in regions of low stress and to add material in regions of high stress.
establish a removal rate R which determines a percentage of the maximal initial stres
below which material may be eliminated, and above which material should be added.
removal rate determines the closed stress contours along which new holes are cut ant
the velocity of the boundary motion. It is increased only after no new holes are cut,
the design boundaries have stabilized. When the constraint is violated, the removal re
decreased in order to add more material in regions of high stress and remove less ma
in regions of low stress. The lowered stresses are empirically seen to result also in Ic
values for the compliance. We terminate when this procedure cannot improve the we
while satisfying the compliance any more. Formally, we proceed as follows:

MAIN ALGORITHM.

1: Initialize; find stresses in initial design.

2: While termination criteria are not satisfied do

3:  Cut new holes.

Move boundaries.

Find displacements, stresses, etc.

If the constraints are violated reduBeR and revert to previous iteration.
7.  UpdateRR

o gk

In order to execute this technique, we must accurately move the boundaries base
the stresses computed for the current design. It is important that this reconfiguration a
holes to merge, new holes to be cut, and the shape to continuously change topology L
the trial motions. These requirements are handled well by level set methods, which we
briefly discuss. For more details, see [28, 29].

5.1. Brief Review of Level Set Methods

Level set methods were introduced by Osher and Sethian [19] and offer highly rok
and accurate methods for tracking interfaces moving under complex motions. They @
out of the theory of curve and surface evolution developed by Sethian in [24—26], wh
constructs the notion of weak solutions and entropy limits for evolving interfaces, &
links upwind numerical methodology for hyperbolic conservation laws to front propagati
problems. The resulting level set approach works in any number of space dimensi
handles topological merging and breaking naturally, and is easy to program.

The level set method works by embedding the interface as the zero level set of a hi
dimensional function. More precisely, given a moving closed hypersuifdoe that is,
I'(t =0):[0, c0) — RN, propagating with a speefl in its normal direction, we wish to
produce an Eulerian formulation for the motion of the hypersurface propagating alonc
normal direction with speeB, whereF can be a function of various arguments, including
the curvature, normal direction, etc. L&t be the signed distance to the interface. If we
embed this propagating interface as the zero level set of a higher dimensional fufctio
that is, letp (x, t = 0), wherex € RN is defined by

P(X,t =0) = £d, (28)
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then an initial value partial differential equation can be obtained for the evolutign of
namely

¢+ FIVe| =0 (29)
o(X,t =0) given (30)

This is known as the level set equation, introduced in [19] by Osher and Sethian.
discussed in [24—26], propagating fronts can develop shocks and rarefactions in the s
corresponding to corners and fans in the evolving interface, and numerical technic
designed for hyperbolic conservation laws can be exploited to construct upwind sche
which produce the physically correct entropy solution.

The above formulation in fact reveaiwo central embeddings, each of which can be
handled by computationally efficient algorithms.

5.1.1. The Level Set Embedding

First, in the initialization step (28), the signed distance function is used to build a funct
¢ which corresponds to the interface at the levelgset 0. This step is known as “initial-
ization;” when performed at some later point in the calculation beyoead, it is referred
to as “reinitialization.” The need for reinitialization in level set methods was first discuss
by Chopp in his work on minimal surfaces; see [11].

The algorithm for the level set equation (29) given in [19] uses upwind schemes base
an ENO-construction. As discussed in that paper, the level set equation is solved throuc
the entire computational domain. This is impractical and inefficient. The algorithm becor
computationally efficient through the use ofiarrow band level set methpihtroduced
by Adalsteinsson and Sethian [1], which confines computation to a narrow band arc
the interface of interest. The narrow band is of user-specified size. As the front moves
reaches the edge of the narrow band, the calculation is stopped, and a new initial |
set function corresponding to the signed distance function is rebuilt. A very large nar
band means that one is essentially computing everywhere, and this reinitialization is n
performed. A very thin narrow band means that one is computing only very close to
front, and hence reinitializing every time step. The numerical tests reported in [1] indice
that a narrow band of a particular size (around 6-10 grid points on each side of the fr
seems to be the correct balance between work spent updating points in the band and
spent doing reinitialization.

5.1.2. The Velocity Embedding

Second, the construction of the initial value PDE given in (29) means that the vefocit
is now defined foall the level sets, not just the zero level set corresponding to the interfe
itself. We can be more precise by rewriting the level set equation as

¢t + Fexdl V| =0 (31)

whereF: is some velocity field which, at the zero level set, equals the given dpebd
other words,

Fext=F ong =0

This new velocity fieldFe is known as the “extension velocity.”
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In [2], Adalsteinsson and Sethian introduce a very fast technique for constructing 1
extension velocity, through the use of fast marching methods [27], which are computatic
techniques for solving the Eikonal and related equations and rely on upwinding, caus:
principles, and heap sort techniques. The idea is as follows. Desirable properties c
extension velocity are that it should match the given velocity on the front itself, and tl
it should move the neighboring level sets in such a way that the signed distance func
is preserved. Consider for a moment an initial signed distance fungtient = 0), and
suppose one builds an extension velocity of the form (see [10])

VFexi- Voo = 0. (32)

It can be shown that the level set functigrremains the signed distance function for all
time, assuming that botk and¢ are smooth. Adalsteinsson and Sethian solve (32) |
O(NlogN) time, whereN is the total number of points where one wants to create th
extension velocity. As such, itis a very efficient technique, and is warranted when a velo
is given only on an interface and must be extended throughout the narrow band in ord
apply the level set update.

5.2. Using the Narrow Band Level Set/Fast Marching Methods
in Structural Boundary Design

By convention, the interior of the structure is labeled “negative,” the outside “positive
In the narrow band, we maintain the distance from the structure boundaries; on the
of the computational domain, we keep track only of the sign of the distance function
addition to the fact that we are outside of the narrow band). Several extensions of the t
narrow band level set method with extension velocities are required in structural bounc
design.

5.2.1. Cutting New Holes

A new hole is cut in the interior of the structure by computing its distance function
its own narrow band (with positive label inside the hole) and then taking the maximum
the two distance functions on the intersection of the narrow bands for the structure anc
hole. On the nonintersecting parts of the narrow bands the distances are maintained
union of the two narrow bands is the narrow band for the resulting structure.

5.2.2. Hanging Nodes

Hanging nodes occur when the boundary motion severs part of the structure from
nontrivial boundary conditions. Fig. 5a) shows a domain with three holes that merge |
one hole, Fig. 5b). After the motion, two smallislands of material are left inside the result
hole.

In structural boundary design, subdomains that become disconnected from the nontt
boundary conditions should be removed from the computations. Practically, they are
relevant and computationally, they become independent underdetermined subproblem:
detect and remove the disconnected component as follows. After the motion, we find
components of the zero contour of the distance function “from the outside toward the insi
starting with the exterior boundary. From these, we rebuild a distance function. Hang
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FIG.5. A domain with three holes (a) that merge into one (b). After the motion, two small islands of matel
are left inside the resulting hole. They have to be removed from the computations.

nodes are recognized as being cut into the “outside” portion of the structure based ol
sign of the partially rebuilt distance function and ignored in the distance rebuilding phe

5.2.3. Stabilization of Boundaries

We do not cut new holes or change the removal rate for a few design steps after cu
one or more new holes, merging holes or after a change in the removal rate, becaus
observed that stress values immediately after these operations were not as reliable as
a stable boundary motion.

Another form of stabilization is symmetrization. For many of the problems in this pap
the structure geometry should remain symmetric due to the symmetry of the clamping
loading conditions. We found that unless we enforce this symmetry, ultimately rounc
errors lead to the departure from this symmetry. Since in our cases the symmetry a
usually aligned with a coordinate axis, we can simply symmetrize the geometry by avera
distance values on the sides of the symmetry axis.

5.2.4. \elocities from Stresses

Recall that we solve for the displacements and difference them to find the (symme
stress tensor, with Laenconstantg. anda,

o = u(Vu+ vu') + A trace(Vu)l.
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From the stress tensor, we calculate the von Mises stress as

2 2 2
S=/oi1 + 05 — 011022 + 3005.

We extend the von Mises stress from the grid to the boundaries by the least square
trapolation method from Section 4.3. In principle, for every component of the bound:
the parameters of motion may be chosen separately, based for example on the maxim:
minimal values of the stress on that component. In the examples in this paper, we di
guish only between the exterior boundary and hole boundaries. Five parameters des
the boundary mation.

1. s, alowerbound below which the boundary moves to reduce the structure with maxir
speed.

2. S, an upper bound below which the boundary moves to grow the structure with m
imal speed.

3. SandSwith s < § < S < Screate an interval of stress values §] in which the
boundary does not move—an interval is needed to avoid shearing the boundary. By resc
the intervals §, s] and [§, S] to the interval [Q =] and usingt(1 + c09/2 on this interval
we arrive at the&* velocity profile depicted in Fig. 6. This profile is scaled to have maximur
absolute valuel2/5 to automatically satisfy a CFL condition.

4. The number of steps taken to advance the front. The velocity is chosen so thata s
step is always allowable. To achieve similar motion on a different grid the number of st
has to be scaled inversely proportional to the change in mesh width.

0.4 q

Scaled Velocity
[w]
T
1

0.2 —

-0.6 b

0.8 -

1 1 1 1
0 5 10 15 20 25 30 35
Scaled Stress

FIG.6. The velocity profile fols = 10, RR~ § = 20,S = 23, andS = 32. The speed is at most one to allow
mesh-dependent scaling and automatic handling of a CFL condition in the level set motion.
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FIG. 7. Values of velocity extension are only assigned inside the narrow band. In the shaded regions
velocity is constant and equal to the value at the corner. In the other regions, the values are the same as
nearest point in the polygon, where in turn the values are obtained by linear interpolation between the valt
the corners.

5.2.5. Velocity Extension

In the implementation, we extrapolate from grid points inside the structure to get st
values at the corners of a polygon whose corners results from calculating the intersec
of the zero level set with the mesh lines of the level set mesh. From the stress val
we calculate the velocities at these points. All grid points inside the narrow band inh
the velocity from the nearest polygon point, with linear interpolation of velocities in ti
polygon segments. Figure 7 illustrates this procedure. At the corners, where the no
does not exist, the extension is different on the two sides of the polygon. On the side \
the acute angle, the extension arrives from the interior of the polygon segments. On the
with the obtuse angle, there exists a region where the velocity is extended by the con
value from the corner point.

5.2.6. Fixing Boundaries

The level set representation also allows inhibiting the motion of parts of the bound:
Following a suggestion by Adalsteinsson, we simply copy values prior to the motion
regions that should not move. Similarly, it it possible to select only inward motion
outward motion on part of the domain by simple operations (e.g.(ma&®, etc.) on the
extended velocity on the grid.
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5.2.7. Choosing Parameter Values

The final geometry found by our procedure depends on the choices of many parame
This is typical for nonconvex optimization problems and is not unique to our approa
For example, it was observed also for the reverse adaptivity approach [21]. A typical ve
for the intial removal rate is between 0.01 and 0.1, the update is usually 0.01 or 0.(
The lower and upper bounds for the velocity typically are 0,S= RR, S=1.15and
S = min(5.55, Snax), WhereSnax is the maximal stress in the initial design. The constrair
on the compliance and on the maximal stress can be chosen arbitrarily. We terminate
example, when a new design achieved under motioR Bf= 0.01 does not satisfy the
constraint anymore.

5.3. Using the Immersed Interface Method in Structural Boundary Design
5.3.1. Solving the PDE When the Structure Becomes “Narrow”

Geometries may arise in which the discretization to second order is not possible bec
there are not enough grid points inside the structure. This is the case especially for ti
like structures, where hole boundaries are close together and parallel over a length of
times the mesh size or more. To deal with these cases correctly, one could use a
grid that resolves the geometry with enough grid points in the structure. But this is cos
especially when large parts of the domain are not yet truss-like. Alternatively, we can a\
the troublesome geometries using morphological operations suggested by Sarti. By erc
(shrinking) the structure bid and then dilating (growing) it by the same amount, we mak
sure that all trusses after this operation have width at leldstT see this, note that in
general, the structure changes very little under these operations. However, where a
narrow truss of width less thartRwas originally present, the erosion has removed it, an
dilation cannot recreate it.

Figure 8 shows a rectangular cantilever with three holes on the computational g
Erosion leads to the light gray gray boundaries, and dilation returns the boundaries tc

0_9:_:. EEE
oa[ L e ]
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0.63-3-\-I
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0.2 FEFFEEREERFH L

0.1 I T T T o'l

FIG. 8. Erosion and dilation remove the narrow truss between the two elongated ellipses, while all of
boundary portions remain almost unchanged. The boundary motion is carried out on a different grid of hal
shown meshwidth.
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original locations except for a little rounding of the corners and in the narrow region betw
the two ellipses that is too narrow for the discretization.

5.3.2. Grid Crossing

For any fixed geometry, the explicit jump immersed interface method converges v
O(h?), but this says nothing about the quality of the solution when the grid is kept fixed ¢
the boundary geometry is modified. In structural boundary design, whenever a boun
crosses a grid point, this point “enters” or “leaves” the structure and is newly used in
computation of the stresses or dropped from this computation. In this situation, the comp
displacements and stresses may change discontinuously, even though the boundary mc
perfectly smooth. To improve this behavior, we abandon the six-point stencil approach f
[33, 36] and use the weighted least squares from Section 4.3. This dramatically impre
the “continuous” dependence of the computed stresses on the boundary shape.

6. NUMERICAL EXAMPLES

The examples in this section treat three different issues.

1. Our implementation of the explicit jump immersed interface method for theeLar
equations finds displacements with second order accuracy on arbitrary domains with
placement and traction boundary conditions.

2. With a Schur-complement technique, the fast solver for rectangles from [34] car
used for problems onirregular domains as well. Ourimplementation scalé¥(ikéog N),
just as the solver for rectangles.

3. The narrow band level set method can be used to alter the shape and topology ¢
structure, with velocities depending on the stresses in the current design. We recove
solution of a well-studied short cantilever example and show that our rules of stress
weight reducing design lead to truss-like structures.

6.1. Second-Order Convergence for the LamEquations

The following radially symmetric example was first studied in the pure loading case
Lamé which can also be found in the books of Murnaghan [18] and Timoshenko [31].
Consider (1) and (2) on the annulus< r < ry; see Fig. 9. Clearly

s (COC+y?) +r2)
—(FFHCr)) e +y?)
sr(C(X2+y?) +12)
(Z+crf)+y) Y

satisfy the elastostatic equations (1), (2) with= f* = 0. The displacementsandv also
satisfy the displacement boundary conditions (3)

s
u= —x,

ri

s
v=—Yy
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FIG. 9. The annulus A5=r, <r <r; = 0.35, centered at0.503 0.495. The choice of center avoids
symmetry of the domain with respect to the partially shown computationallyrd@.025). On the outer boundary,
a displacement in the normal direction of lengtlis indicated by the dashed circle. The displacement on thi
traction-free inner boundary is indicated by the heavy circle.

on the inner boundaryx? + y? =r?} and a traction-free boundary condition ((4) with
g = 0) on the outer boundarfx? + y? = r3}.

Figure 10 shows the analytic solution (foe= 0.02,r; = 0.35,r, = 0.15 andC = 1/3;
on a polar grid for visualization only). To test how well we can recover the symmetry
the solution on a Cartesian grid, we have shifted the origin to the point (0.503, 0.495).

0.023

g
0.021 WI‘I"!’,,IIIIEII%

= gl =0
0019 o=l \\‘\“‘}\l‘?@t’;’
| &i\:é:iii'\_. _‘_‘;‘,‘ "\E)::’
0.018 e = f/

0 o

FIG. 10. Wire frame of the length of displacement of the exact solution@et 1/3,r; = 0.35,r, = 0.15,
s = 0.02 centered at (0.503, 0.495)) evaluated on a polar grid.
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5 L L L
f 2 3

10 10 10

FIG. 11. The maximum error over the displacementsrioe 20, 30, 40, ..., 160. The affine least squares
fitindicates convergence with(h'”). Here the original 6-point stencil selection (see [36]) was used. The scat
shows significant influence of the mesh—boundary geometry.

computational grids are uniformly spaced with- 1 interior grid points and mesh width
h = 1/nin the unit square [01] x [0, 1].

Figures 11-13 display values for the maximum error of the displacement over all ¢
points inside the annulus as the mesh is refined, mith20, 30, 40, . . ., 160 points in each
direction. Figure 11 shows results for the original 6-point stencil selection scheme, Fic
12 shows results for biquadratic weighted least squares extrapolation, and Fig. 13 show
results for bicubic weighted least squares extrapolation. We observe second-order redt
of the error in the maximum norm in all figures, but much more uniform behavior for t
least squares fit, with slightly better results for the cubic fit. Figure 14 contains scatter p
that show the length of displacement as a function of the distance of a grid point from
point (0.503, 0.495). As the grid is refined foe= 20, 40, 80, 160, the radial symmetry of
the solution is recovered.

5 L L L

10" 10° 10°

FIG. 12. Maximum error as in Fig. 11, but for biquadratic least squares interpolation. The affine least squ
fit indicates convergence wit(h?#). The scatter of the errors is significantly reduced.
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5 L L L

10’ 10

3

FIG. 13. Maximum error as in Fig. 11, but for bicubic least squares interpolation. The affine least square
indicates convergence wit(h?®), slightly better than for the biquadratic fit.

6.2. TheO(N logN) Solution Method

The fast solver that is outlined in Section 4.6 is used to apphin the Schur-complement
inside GMRES or BICGSTAB iterations. For large problems and/or high required accure
we find that BICGSTAB is preferable because it requires less memory and the converg
of restarted GMRES is not very fast. However, becagsé is applied four times per

0.023 . 0.023
0.022 0.022

0.021 0.021 \,'.

0.02 0.02 "i.\%‘

0.019 0.019 "&‘my/
0.018 0.018

0'015.15 02 025 03 035 0'015.15 02 025 03 035
0.023 0.023

0.022 0.022

0.021 0.021

0.02 0.02

0.019 0.019

0.018 0.018

0'015.15 02 025 03 035 0'015.15 02 025 03 035

FIG. 14. Scattering of length of displacement valuesrios 20, n = 40, n = 80, andnh = 160. The first plot
also shows the exact solution as a function of the radius. As the grid is refined, the symmetry of the exact sol
is fully recovered.
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TABLE |
Performance of BICGSTAB for the Structure in Fig. 2

N Iterations Flops Flop ratio Mflops Seconds Time ratio
39x79x 2 36 2.7e09 — 77 3.5el —
79x 159x 2 49 3.4el10 12.6 148 2.3e2 6.6

159x 319x 2 48 1.8ell 53 164 1.1e3 4.8
319x 639x 2 60 6.8ell 3.8 145 4.7e3 4.3
639x 1279x 2 81 4.4e12 6.5 126 3.5e4 7.4

BiCGSTAB iteration and only once per GMRES iteration, for problems that we can so
with GMRES without restarting, GMRES is the preferred method.

Figure 2 shows the stress contour lines of an elastic structure that is loaded and clar
as indicated in Fig. 1. The perforated rectangle is embedded in a larger rectangle
computational domain, which is indicated in light gray in both figures. The same probl
was solved on grids with 4Q 80, 80x 160, 160x 320, 320x 640 and 640« 1280 points.
The stresses in Fig. 2 were found on the %6820 grid, but on the other grids the results
were similar, with convergence under refinement. Because the largest problem req
BiCGSTAB in order to reside in the memory of our SUN workstation without swappin
we have used it even for the smaller problems where GMRES would apply in order to be .
to compare the results. Table | establishes that also on irregular domains the operation
time required to solve the problem scale [®éN log N) and that we can use this method to
solve medium-sized problems on workstations. For each problem size, we have reduce
residue by six orders of magnitude. This ensured that the number of iterations was sir
for all problems sizes and that we could compare the amount of work performed. In orde
really benefit from the higher resolution, one should reduce the residue even further fol
larger problems. The odd numbers of interior grid points were chosen to be able to com
point values with the finest grid. This means that the prime factorizations and hence
efficiency of the FFT vary, but growth lik&(N log N) is observable nontheless.

6.3. Structural Boundary Design via Level Set and Immersed Interface Method
6.3.1. Stress, Weight, and Compliance Reduction

The cantilever in Fig. 15 is clamped and loaded in the same fashion as indicated in Fi
High stresses occur at the inner endpoints of the clamped boundary portions and &
inward corners. This behavior is typical in elasticity, and the rounding of such corner:
known as filleting.

Here, we show that our approach is able to find good fillets while at the same time redu
the compliance and the weight of the structure. We do not claim to reach an optimum,
believe that the reduction of the maximal stress at the fillet by 60%, reduction of complia
by 20% and reduction of weight by 10% together with the simplicity of the design rules
practically relevant.

As the homotopy parameter, we have arbitrarily chasas 20% of the maximal von
Mises stress in the initial design in Fig. 15. The corresponding contour is fattenec
Figs. 15-17. We allow outward motion (i.e., for stress abgvia a neighborhood of the
initial corners and cut one hole along a contour of low stress. This hole is then allov
to grow on portions of its boundary that are stressed baldw principle, the hole could
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FIG. 15. Stress contours in the initial design. The dark curves represent the 20% contour of the maxi
initial stress.

shrink as well, but the stresses on its boundary do not reach the point where shrinking w
occur. Cutting the hole allows us to design a cantilever with less weight than the origi
one even though we add material in the corners.

After 10 design steps, with shape seen in Fig. 16, the stress in the fillets has been rec
by 50%. Now the growth of the hole drives further changes in the fillet shape until that &
stabilizes at the shape in Fig. 17. The fillet shape that develops is similar to that founc
Xie and Stevens [37], but note that we achieve it by the opposite procedure. Rather
removing material from a ground structure, we add material where the stresses are |
Also, the stress contours are much smoother in the final design than in the initial design
the down side, at the inner endpoints of the clamped boundaries, the stress has incr
by 25%.

von Mises Stress

0.9
0.8
0.7
0.6
>0.5
0.4

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X

FIG. 16. The formation of the fillet for the design in Fig. 15 is essentially finished, the hole is still growin
This growth drives further changes of the fillet. The dark curves represent the 20% contour of the maximal ir
stress.
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von Mises Stress
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FIG. 17. Formation of fillet and hole are finished. The dark curves represent the 20% contour of the maxi
initial stress.

Figure 18 shows the behavior of the maximal stress (maximum taken away from
clamped and loaded boundary portions) weight, and compliance. They are all scaled tc
at the initial design. The oscillations in the compliance and stress for the later design:s
due to a “ripple motion” as parts of the hole boundary are stressed close to the limi
outward motion.

08"

0.6

0.2

0 1 1 1 1 ]
0 20 40 60 80 100 120

FIG. 18. Maximal stress (crosses), compliance (circles), and weight (stars) for the fillet design example f
Figs. 15-17.
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FIG.19. (a)Clamping, loading, and stresses in the initial design. (b) Stress distribution in an improved de:
close to the pin-jointed two-truss solution.

6.3.2. Constrained Design of a Short Cantilever

A cantilever of ratio 1:3 is clamped everywhere on the left boundary and vertica
loaded on the mid 6% of the right boundary. The rest of the right boundary and the top
bottom boundaries are traction free, as indicated in Fig. 19.

This problem was chosen because it is a standard test problem for structural boun
design (used, e.g., in [37, 21]), with a known solution for a simpler pin-jointed two-tru
problem [22]. The optimal height in that case is twice the width of the structure.

Figure 19a also shows the distribution of the von Mises stress in the original des
Figure 19b shows an improved geometry close to the two-truss solution and stress d
bution inside. We have almost achieved a fully stressed design. Except for the left, bui
edge, the cantilever is stressed to at least 40% of the maximal stress of the initial desit

We consider the problems of improving the weight of the cantilever for three differe
constraints on the compliance. The constraints are 1.2, 2.0, and 10.0 times the compli
of the “full” design from Fig. 19. Improved designs are seen in Figs. 20a—20c. It is cle
that the shape depends very much on the constraint, and a more lenient constraint a
the use of less material.

Figure 21a shows the evolution of the weight (circles) and compliance (crosses) for
constraint at 2.0. Simple control of the homotopy parameter based on constraint viola
leads to a nonmonotone decrease of the weight, but allows significant changes in s
when the constraint is reached and the homotopy parameter is decreased.

Figure 21b shows the number of GMRES iterations needed for the different designs.
iteration count is always in the same range, with a slight increase as the geomerty o
design becomes more complicated.
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Improved designs for various constraints on the compliance. (a) 1.2, (b) 2.0, and (c) 10 times
compliance of the initial design in Fig. 19.

6.3.3. Design of a Long Cantilever from a Perforated Structure

A cantilever of ratio 2 : 1 is built in near the top and bottom of the left edge and centre
loaded on 5% of the right hand edge. The rest of the right-hand edge and the top and bc
edges are traction free. From theoretical considerations [4, 7], a truss-like structur
expected to develop for optimal low-weight structures in these conditions. These solut
have been observed (see Figs. 22—-35) based on a rectangular ground structure b
homogenization, where a weighted sum of weight and compliance are minimized [5]; an

00
§

FIG

.21,

20

120

(a) Compliance (crosses) and weight (circles) of the sequence of designs leading to the or
Fig. 20b. (b) Number of GMRES iterations needed to find the stresses in the designs leading to the one in Fig
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FIG. 22. Initial Design.
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FIG. 23. Design 1.
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FIG. 24. Design 2.
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FIG. 34. Design 130.

evolutionary structural optimization, where material below a certain stress level is remo
[22, 37]. Using unconstrained weight reduction by homotopy on the stress, we obst
the same phenomenon based on a perforated ground structure. The homotopy param
initially rather small, so that the small holes tend to disappear. After the stable configura
in Fig. 29 is reached, the homotopy parameter is increased slowly and a truss-like struc
develops as more material is removed.

7. CONCLUSION AND OUTLOOK

We have presented a numerical algorithm for structural boundary design. The techn
accurately solves the Largquations and accurately differences the displacements for
stresses in arbitrary domains. It can be used to find basically optimal solutions to constra
minimization problems in some simple, well-studied test cases. We expect to extend
work to three dimensions and more complex situations. A large collection of case stu
and further refinements may be found in [30].
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FIG. 35. Design 135.
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