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We develop and test an algorithmic approach to the boundary design of elastic
structures. The goal of our approach is two-fold: first, to develop a method which
allows one to rapidly solve the two-dimensional Lam´e equations in arbitrary domains
and compute, for example, the stresses, and second, to develop a systematic way of
modifying the design to optimize chosen properties. At the core, our approach relies
on two distinct steps. Given a design, we first apply an explicit jump immersed
interface method to compute the stresses for a given design shape. We then use a
narrow band level set method to perturb this shape and progress towards an improved
design. The equations of 2D linear elastostatics in the displacement formulation on
arbitrary domains are solved quickly by domain embedding and the use of fast
elastostatic solvers. This effectively reduces the dimensionality of the problem by
one. Once the stresses are found, the level set method, which represents the design
structure through an embedded implicit function, is used in the second step to alter
the shape, with velocities depending on the stresses in the current design. Criteria
are provided for advancing the shape in an appropriate direction and for correcting
the evolving shape when given constraints are violated.c© 2000 Academic Press
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mersed interface method; immersed interface method; linear elastostatics.

1. INTRODUCTION

The goal of this paper is to advance methodology for computing linear elastostatics
in complex geometries and to develop techniques for computing improved designs under
user-supplied constraints. We present a combined level set and finite difference technique
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FIG. 1. Bending of the initial design of a cantilever with 105 circular holes. Parts of the left boundary are
clamped; on the rest of the boundary, including all holes, the traction is specified with nonzero loading on a
small portion about the center of the right boundary. The bending is beyond the regime of small displacement
elastostatics and chosen only to illustrate the behavior. The larger rectangle is the computational domain with a
320× 160 grid indicated in the lower left corner.

for constructing efficient designs which satisfy certain design criteria. The explicit jump
immersed interface method is used to compute the solution of the elliptic problem in complex
geometries, and the narrow band level set method is used to track the motion of the design
boundaries under complex speed functions in the presence of topological changes. The
application setting for these algorithms is the boundary design of a loaded elastic structure,
with short structural boundary design. The design changes are based on the weight and
stresses, and boundaries are moved, removed, or introduced based on these quantities.

By way of illustration, consider a clamped and loaded cantilever (see Fig. 1). Suppose
our goal is to remove as much material as possible from the original shape, while still
making sure that the compliance (defined as the yield under the load) or the maximal
stress in the structure stays below a certain threshold value. We can start with the original
perforated structure, compute the stress, and then try to add and remove material in order
to reduce the weight in such a way that the compliance or stress does not rise above a given
user-prescribed level (see Fig. 2). Different designs (that is, newly introduced, removed, or
reshaped holes) will give different compliance and stresses in the design. Our approach is to
devise a systematic way to add and remove material. This requires an accurate technique to
compute the stresses for a given multiply connected domain and an accurate technique
to remove or reshape existing boundaries and to introduce new ones. The level set method
is instrumental in the addition and subtraction of material; the explicit jump immersed
interface method is the key to computing the stress in arbitrary domains. The improved
cantilever that is designed by this procedure looks like Fig. 35.

As a general outline, the algorithmic approach presented in this paper is as follows. In
the first step, the explicit jump immersed interface method is applied to the equations of
2D linear elastostatics in the displacement formulation (from now on referred to as the
Lamé equations), and problems on arbitrary domains are solved quickly and without mesh
generation by domain embedding and the use of fast elastostatic solvers. This effectively
reduces the dimensionality of the problem by one. In the second step, the given design is
modified. The level set method, which represents the design structure through an embedded
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FIG. 2. Stress contours on the design from Fig. 1.

implicit function, is used to alter the shape, with velocities depending on the stresses in
the current design. These stresses can be found from the displacements that were found in
the first step. Criteria are provided for advancing the shape in an appropriate direction and
for correcting the evolving shape when given constraints are violated. The two steps are
iterated until no further improvement can be made.

The benefit of using the explicit jump immersed interface method is to avoid mesh
generation and the use of fast elastostatic solvers; the benefit of using a level set method is
the elegant handling of changes in topology such as the merging of holes or the filling in of
the or holes with large stresses around them.

The application of the algorithmic methodology presented in this paper is by no means
complete. Our techniques allow accurate and efficient computation of the linear elastic
equations for arbitrary geometry and provide an approach to alter the design shape in a
systematic way to satisfy user-prescribed constraints. As such, the application falls into
the category of constrained minimization problems. As with many such problems, our
technique allows us to improve the objective, but cannot be guaranteed to find the global
minimum. In particular, our criteria for perturbing the given design and searching for nearby
trial shapes which both satisfy the constraint and contain less material is somewhat ad hoc;
we can neither prove that it converges nor guarantee that it extracts the global minimum.
Nonetheless, it provides an appealing way to approach some of these problems.

2. BACKGROUND ON STRUCTURAL BOUNDARY DESIGN AND PREVIOUS WORK

One main approach to structural design for variable topologies is the method ofhomoge-
nization[5, 6, 8]. The following summary is paraphrased from [3]: Homogenization extracts
homogeneous effective parameters from heterogeneous media. The effective properties of
a composite material are defined as the homogenized coefficients of a fine mixture of given
phases. The difficult “layout” problem of material distribution is replaced by a much eas-
ier “sizing” problem for the density and effective properties of a perforated composite
material obtained by cutting small holes in the original homogeneous material. Work in ho-
mogenization has shown that at low volume fractions the optimal solutions for perforated
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plates in plane stress and bending, respectively, tend to those of least-weight trusses and
grillages (see [4, 7]).

From our point of view, the most important insight obtained by homogenization is that
some objectives in the mathematical modeling of structural design are oversimplified and
do not yield the intended results. The objective “to minimize a weighted sum of compli-
ance and weight for a given load” results in designs with infinitesimal specially shaped
pores in the material that make the structure not manufacturable and very sensitive to vari-
ations in the loading. In practical situations, one would like the material to be composed
of macroscopic solid and void regions, to allow for variations in the loading, to account
for cost of manufacturing, etc. Homogenization can deal with these issues by penalization
of intermediate densities and postprocessing, but the attractive conceptual simplicity of the
homogenization approach is lost for realistic requirements.

In the “evolutionary structural optimization” approach of Xie and Steven, [37], changes
in the size, shape, and topology of the structure are achieved by removing elements (usually
refered to ashard kill) from some fixed finite element discretization of a “ground structure,”
an initial large domain in which the final designed domain isa priori known to be contained.
The weight reduction can be governed by the stress, stiffness, frequency, or buckling load.
In the similar “reverse adaptivity” approach of Reynoldset al. [21], approximately fully
stressed structures are found by removing a fixed percentage of relatively understressed ma-
terial. Reverse adaptivity refines finite element meshes near the boundary during the design
procedure to reduce computational cost or increase resolution. Essentially, both evolution-
ary structural optimization and reverse adaptivity are homotopy methods, the difference
(apart from the adaptive mesh refinement in reverse adaptivity) is that the parameter is a
percentage of stress or a percentage of weight.

Another related approach is the “bubble method” of Eschenaueret al.[12, 13], where the
topology is modified in a prescribed fashion by placing holes of known shape at optimal
positions in the structure, based on so-called characteristic functions of the stresses, strains,
and displacements. From this method we have gathered the importance of letting the design
for a given topology “settle into a good shape” before further changing the topology.

Sharp boundary-based methods for structural design are a more direct approach than
homogenization. For example, they do not require the reformulation of the constrained
problem via Lagrange multipliers, and in general they allow the modeler more explicitly to
account for any features she wants to incorporate into the design. The possible complications
make the notion of proving the optimality of the design hopeless, but it may be argued (as,
for example, in [21]) that for many applications, optimality is not as useful a concept as
improvement, and we will thus only make claims for our own method regarding the latter.
As in [21], “we improve the design by making more efficient use of the material.”

3. OVERVIEW OF WORK AND ALGORITHMIC APPROACH

Adopting the principal idea of redesigning the structure based on the distribution of
stresses in the current design to find fully stressed structures, we focus on the resolution of
the boundaries. The level set method [19], introduced by Osher and Sethian, is designed for
moving boundaries with changes in topology, and relies in part on the theory and numerics of
curve evolution developed by Sethian in [24–26]. In our case, the velocity of this boundary
motion depends on the stress on the boundary. On arbitrary domains we obtain the stresses
by solving the linear elastostatic equations in the displacement formulation and differencing
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the displacements using the explicit jump immersed interface method (see [36]), a finite
difference technique on uniform grids after Li and LeVeque’s immersed interface method
(IIM, [14]) that is capable of dealing with non-grid-aligned boundaries with the same
truncation error as interior differences. The biggest benefit of our approach compared to
the earlier work [21, 37] is that it is easier to add material (with some subgrid resolution) at
hole boundaries with high stress than on a triangulated finite element mesh. In particular,
this allows us to start with designs that have holes cut “in the wrong place,” and see these
holes disappear.

In the elliptic portion of structural boundary design, mesh generation for the design
domains can become the major cost. We avoid the mesh generation step by separating
the representation of the boundary from the uniform computational grid. To keep the data
structures simple and in order to use fast elastostatic solvers on rectangular domains [34], the
problem is posed on a larger, rectangular domainR with zero normal boundary conditions.
The boundary conditions on the original boundary are rewritten as jump conditions that
introduce discontinuities in the displacements insideR. Our choice of jump and boundary
conditions forces the extended solution to vanish on the extension, but to match the solution
inside the structure. On the level of linear algebra, a Schur complement (as previously used,
e.g., in [15, 16, 36]) reduces the number of variables from proportional to the grid points to
proportional to the length of the boundary normalized by the mesh width.

In the design portion of structural boundary design, changes in topology provide the
greatest challenge. The structure boundaries are viewed as moving; holes may merge with
each other or the exterior or may have to be newly created. The level set method represents
the boundaries implicitly as the zero level curve of a grid function that is essentially the
distance from the boundary. Boundary motion and merging, as well as the introduction
of new holes, are all performed using this grid function. This approach also allows the
detection of regions that have become separated from the nontrivial boundary conditions
and have to be dropped from the computations. For efficiency reasons, we use the narrow
band level set method (see [1]).

We considered two options for the boundary velocity. The first is derived from the stress on
the boundaries and inside the structure. The second is based on the stress on the boundaries
only, and then extends the velocity onto the grid by constant values in the normal direction.
We use the second option because the first does not allow for addition of material and because
in our experience tended to give undesirable corners in the boundary geometry. In addition,
the second option theoretically maintains a distance function from the zero contour.

In more detail, the elliptic aspects of structural boundary design are considered in
Section 4 while the design aspects are treated in Section 5. To compute the stresses, we
derive jump conditionsfrom given displacement boundary conditions in Section 4.1, and
from given traction boundary conditions in Section 4.2. The separate treatment of boundary
conditions serves only to illustrate the concepts; in the numerical examples in Section 6,
different types of boundary conditions are given on the same component of a boundary. We
use a weighted least squares approach for derivative estimation (see Section 4.3) which is
similar to ideas in Li [15] and improve and implement the corrections for cross-derivatives
(previously described in [36]) in Section 4.4. Derivative estimation and corrections are for
the first time carried out to third order for the purpose of achieving anO(h2) truncation error
at all points, including points neighboring the boundary. Section 4.5 briefly describes the
Schur-complement approach for embedded irregular domains and Section 4.6 summarizes
the ideas behind the fast elastostatic solver.
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In Section 5, we review the narrow band level set method for front propagation in
Section 5.1 before going into its extensions (e.g., determination of the boundary veloc-
ity) to structural boundary design in Section 5.2. Some remarks concerning the explicit
jump immersed interface method for varying geometries follow in Section 5.3.

We demonstrate second order convergence of the explicit jump immersed interface
method for elastostatics in Section 6.1. The third order approximations improve the so-
lutions to be less sensitive to changes in the boundary geometry. Second order convergence
of the displacements gives first order convergence of the stresses. These are again extrapo-
lated to the boundaries using a weighted least squares fit in order to find the front velocities
as required by the level set method.

In Section 6.2, we show that we can solve elastostatic problems in irregular regions
with the sameO(N log N) efficiency that the fast solver exhibits for rectangular domains,
and that it is feasible to solve medium-sized problems of up to 1.6 million variables on
workstations.

In the examples of structural boundary design in Section 6.3, the idea is to reduce the
weight of the structure while keeping the compliance below a certain bound and achieving
as uniform a stress distribution as possible in the structure, i.e., to find so calledfully stressed
structures. We can start from a ground structure like [21, 37], but any existing design may
be improved—or found to be unimprovable—with our approach. Three mechanisms allow
changes in the size, shape and topology of the structure. We introduce new holes by cutting
away material along contour lines of the von Mises stress. A homotopy parameter called
the removal rate [37]) guides the choice of contour levels. The removal rate is a percentage
of the maximum von Mises stress in the original design and is slowly increased according
to another parameter, the evolutionary rate, to remove material from the structure. We then
move the boundaries using a level set method with velocities given from the stress on the
boundaries and by extending these velocities from the boundaries by a constant value normal
to the boundaries, as suggested in [2]. The procedure stops when it cannot further decrease
the weight of the structure without “constraint violation.” Alternatively, an observer may
want to choose the best design out of the sequence of designs.

4. FINITE DIFFERENCES FOR THE LAM É EQUATIONS IN GENERAL DOMAINS

Recall the two-dimensional Lam´e equations:u = (u, v) are the displacements inx and
y, respectively, and

− E

2(1+ ν) (1u+ uxx + vxy)− νE

((1+ ν)(1− 2ν)
(uxx + vxy) = f u in Ä,

− E

2(1+ ν) (1v + uxy+ vyy)− νE

((1+ ν)(1− 2ν)
(uxy+ vyy) = f v in Ä.

HereE is the Young modulus,ν is the Poisson ratio,µ = E/(2+ 2ν) andλ = νE/((1+
ν)(1− 2ν) are the Lam´e constants,f = ( f u, f v) are body forces, andÄ is an open,
connected, but not necessarily simply connected domain. We will also write (withC =
µ/(µ+ λ))

C1u+ uxx + vxy = − f u

µ+ λ in Ä, (1)

C1v + uxy+ vyy = − f v

µ+ λ in Ä. (2)
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Displacement boundary conditions are

u = ū on01 ⊂ ∂Ä. (3)

Here ū = (ū, v̄)T are given functions on01, the part of∂Ä, the boundary ofÄ, where
displacements are given. Traction boundary conditions are

σ(u)n = g on02 ⊂ ∂Ä. (4)

We assume that the coefficients, geometry, and boundary values are such that the problem
(1)–(4) has a unique solution.

Throughout, we consider second order centered finite difference discretizations for all
occurring derivatives. The explicit jump immersed interface method is used to treat irregular
boundaries. For details of this discretization of an elliptic equation we refer the reader to [36].

We embedÄ so that its closure is contained in the rectangleR and extendu andv by
zero on the open complement ofÄ in R, R\cl{Ä}. We will denote this open complement by
Ä+ and writeÄ− for the original domainÄ. The extended functionsu andv are in general
discontinuous across∂Ä, with nontrivial jumps in all derivatives that are determined by the
boundary conditions and derived below. Ifq is a function onR andα is a point on∂Ä−,
the jump ofq atα is

[q](α) = lim
x+→α inÄ+

q(x+)− lim
x−→α inÄ−

q(x−).

The explicit jump immersed interface method requires a complete set of independent jump
conditions for all variables and their derivatives in the coordinate directions below the order
of the discretization to achieve the same convergence rate that is obtained on rectangles.

4.1. Displacement Boundary Conditions

The jumps in displacements do not involve the differential geometry of the boundary,
and can be written out immediately for Cartesian coordinates.

An extension ofu andv by zero onR\cl{Ä}, whereR= [a, b] × [c, d], and defining

f̃ u =
{− f u/(µ+ λ) in Ä

0 in R\cl{Ä}

f̃ v =
{− f v/(µ+ λ) in Ä

0 in R\cl{Ä}

yields the differential equation on the rectangleR that the explicit jump immersed interface
method works on,

C1u+ uxx + vxy = f̃ u in R\∂Ä,
C1v + uxy+ vyy = f̃ v in R\∂Ä

with boundary conditions

vx = u = 0 on03 = {x ∈ {a, b}, y ∈ [c, d]} ⊂ ∂R, (5)

ux = v = 0 on03 = {y ∈ {c, d}, x ∈ [a, b]} ⊂ ∂R. (6)
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The fact thatu andv satisfy the same equation inÄ+ as inÄ− and the choice of these
particular “normal” boundary conditions on∂R is essential for the use of a fast solver onR.

Across01, the jump conditions are

[u] = −ū on01, (7)

[v] = −v̄ on01, (8)[
∂mu

∂xi ∂y(m−i )

]
= − ∂mu−

∂xi ∂y(m−i )
, i = 0, 1, . . . ,m; m= 1, 2, . . . (9)[

∂mv

∂xi ∂y(m−i )

]
= − ∂mv−

∂xi ∂y(m−i )
, i = 0, 1, . . . ,m; m= 1, 2, . . . . (10)

Alternatively, the equation and approximations of tangential derivatives may be used to
derive jump conditions for second and higher derivatives as suggested in [36] and previously
in [15].

THEOREM1. When01 = ∂Ä, the extension of u andv by zero is the unique solution of
the extended problem on R, where u andv satisfy the normal boundary conditions(5) and
(6) on∂R, the elastostatic equations(1) and(2) inÄ− and inÄ+, and the jump conditions
(7)–(10). In other words, the restriction toÄ− of the solution of the extended problem solves
the original boundary value problem(1)–(3).

Proof. By design, the extended functionsu andv satisfy the boundary conditions on
R, the jump conditions on∂Ä and the differential equations inÄ− andÄ+. If any u and
v satisfy (9) and (10), this impliesu+x = u+y = v+x = v+y = · · · = v+yy = 0. This, together
with the facts thatu andv satisfy (5) and (6) on∂R and satisfy the elastostatic equations
inÄ+ guarantee thatu andv vanish onÄ+. But thenu+ = v+ = 0. Together with this, (7)
and (8) imply thatu− = ū andv− = v̄. But then the uniqueness ofu andv onÄ− is exactly
the assumed uniqueness of the solution of the original boundary value problem.■

4.2. Traction Boundary Conditions

Different from displacement boundary conditions, traction boundary conditions are more
conveniently expressed in the local coordinates of the boundary, i.e., derivatives in the
tangent and normal directions. The traction boundary condition couples the two Cartesian
displacement variables.

4.2.1. Jumps in Local Coordinates

Again the goal in this section is to get a complete set of jump conditions from the traction
boundary conditions upon extending the solution by zero.

For concreteness, we may think of (4) as realized in Cartesian coordinates. Thenu =
(u, v) is the vector of displacements in thex andy directions,σ is the stress tensor expressed
in (x, y) coordinates,n = (n1, n2) is the inward normal to the boundary (given in(x, y)
coordinates), andg is a vector of surface forces applied at that boundary, also given in(x, y)
coordinates.

We indicate the tangent to the boundary byt = (n2,−n1) so that(t, n) form a right-hand
system. The displacements in this coordinate system areξ = u · n andη = u · t. We think
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of gradients as row vectors, so∇u = ( ux uy

vx vy
), and use the notation

ξn = ∇(u · n)n = nT (∇u)n, (11)

ηn = ∇(u · t)n = nT (∇u)t, (12)

ξt = ∇(u · n)t = tT (∇u)n, (13)

ηt = ∇(u · t)t = tT (∇u)t. (14)

We rewrite (4) in theselocal coordinatesthat are implied by the geometry of the boundary
and change with the boundary(

E

2(1+ ν)
(

2ξn ξt + ηn

ξt + ηn 2ηt

)
+ Eν

(1+ ν)(1− 2ν)

(
ξn + ηt 0

0 ξn + ηt

))(
1

0

)
=
(

g · n
g · t

)
.

From this we derive formulas for the normal derivatives of the displacements in terms of
tangential derivatives.

ξn = −g̃ξ − ν

1− ν ηt , (15)

ηn = −g̃η − ξt , (16)

where

g̃ξ = − (1+ ν)(1− 2ν)g · n
E(1− ν) ,

g̃η = −2(1+ ν)g · t
E

.

Now we have a complete set of jump conditions, albeit some not yet in Cartesian coor-
dinates.

[u] = −u− on02, (17)

[v] = −v− on02, (18)

[ξn] = −ξ−n = g̃ξ + ν

1− ν η
−
t on02, (19)

[ηn] = −η−n = g̃η + ξ−t on02, (20)

[ξt ] = −ξ−t on02, (21)

[ηt ] = −η−t on02. (22)

The second- and higher-order jumps [uxx], [uxy], . . . , [vyyy] are the same as in the displace-
ment case, (9) and (10) form≥ 2. The derivations in Section 4.2.2 bring (19)–(22) into the
form required by the explicit jump immersed interface method.

4.2.2. Jumps in Cartesian Coordinates

Equations (11)–(14) can be used for coordinate transformations of jumps,(
nT

tT

)(
[ux] [uy]

[vx] [vy]

)
(n t) =

(
[ξn] [ηn]

[ξt ] [ηt ]

)
,
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or, using the orthonormality of(n, t),(
[ux] [uy]

[vx] [vy]

)
= (n t)

(
[ξn] [ηn]

[ξt ] [ηt ]

)(
nT

tT

)
.

Observe that (
[ξn] [ηn]

[ξt ] [ηt ]

)
=
(

g̃ξ g̃η

0 0

)
+
( ν

1−ν η
−
t ξ−t

−ξ−t −η−t

)
and get

[ux] = (n1 t1)

((
g̃ξ g̃η

0 0

)
+
( ν

1−ν η
−
t ξ−t

−ξ−t −η−t

))(
n1

t1

)
,

[uy] = (n1 t1)

((
g̃ξ g̃η

0 0

)
+
( ν

1−ν η
−
t ξ−t

−ξ−t −η−t

))(
n2

t2

)
,

[vx] = (n2 t2)

((
g̃ξ g̃η

0 0

)
+
( ν

1−ν η
−
t ξ−t

−ξ−t −η−t

))(
n1

t1

)
,

[vy] = (n2 t2)

((
g̃ξ g̃η

0 0

)
+
( ν

1−ν η
−
t ξ−t

−ξ−t −η−t

))(
n2

t2

)
.

Putting it all together,

[ux] =
(

ν

1− ν n2
1− t2

1

)
η−t + n2

1g̃ξ + n1t1g̃η,

[uy] =
(

ν

1− ν n1n2− t1t2

)
η−t + (n1t2− n2t1)ξ

−
t + n1n2g̃ξ + n1t2g̃η,

[vx] =
(

ν

1− ν n2n1− t2t1

)
η−t + (n2t1− t2n1)ξ

−
t + n2n1g̃ξ + n2t1g̃η,

[vy] =
(

ν

1− ν n2
2− t2

2

)
η−t + n2

2g̃ξ + n2t2g̃η,

where

η−t = (t1, t2)
(

u−x u−y
v−x v−y

)(
t1
t2

)
= t2

1u−x + t1t2u−y + t2t1v
−
x + t2

2v
−
y ,

ξ−t = (t1, t2)
(

u−x u−y
v−x v−y

)(
n1

n2

)
= t1n1u−x + t1n2u−y + t2n1v

−
x + t2n2v

−
y .

4.3. Weighted Least-Squares Grid-to-Interface Extrapolation
of Function and Derivative Values

The least-squares fit idea was used to second order in [15] for interfaces in order to
improve the stability to the immersed interface method in the presence of large jumps in
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the coefficient. Here, we describe it to third order and in the one-sided limit context of
the explicit jump immersed interface method. It is a general method to impose boundary
conditions and jump conditions on nongrid-aligned boundaries and interfaces that is easily
programmed and easily extended to three space dimensions.

4.3.1. Third-Order Weighted Least-Squares Fit

Figure 3 shows an annulus embedded in a square. The annulus is not centered in the square
in order to avoid symmetry in the grid effects in later considerations. The heavy dot marks an
intersection of a boundary with the mesh and the circles mark grid points inside the domain
within distancer from the boundary point that are used to extrapolate function and derivative
values from the grid to the boundary. The arrow points in the outward normal direction to
the boundary, denoted byn = (c, s). We denote the coordinates of the boundary–mesh
intersection by(xα, yα) and a generic marked grid point by(xi , yj ). Let hi = xi − xα and
kj = yj − yα. The restrictionRselects the valuesUR of a grid functionU at the marked grid
points. The bicubic polynomialp should ideally satisfyui j = p(xi , yj ), wherep(xi , yj ) =
p0+ p1hi + p2kj + p3h2

i + p4hi kj + p5k2
j + p6h3

i + p7h2
i k j + p8hi k2

j + p9k3
j , for each

of the marked grid points. We will discuss this interpolation in more detail in Section 4.3.2.
On nl > 10 grid points, this linear system is overdetermined. We use a least-squares fit
and introduce weights that allow better approximation closer to the extrapolation point. For
example, one could usewi j = (1+ cos(πdi j /r ))/2 as in [15], where 0≤ di j =

√
h2

i + k2
j ≤ r ,

andr is the “radius of influence.” For these weights, due to the use of one-sided stencils,
we found that we need to use largerr than Li does in [15]. To be able to use a smaller radius
of influencer , we adjusted the weights,wi j = 1/(1+ di j /h).

The weighted least squares problem for the coefficients ofp is then

min
p

nl∑
l=1

w2
i j (l )

(
p
(
xi (l ), yj (l )

)− ui j (l )
)2
,

FIG. 3. In (a), we see an annulus embedded in a square and (b) shows a blowup of the same figure. The heavy
dot marks an intersection of the annulus boundary with the mesh; the circles mark grid points inside the domain
within distancer from the boundary point. The arrow points in the outward direction normal to the boundary.
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wherenl is the number of marked points and the minimum is taken over all bicubic polyno-
mials p. Letting2 W = diag((wi j (l ))

nl
l=1) andP = [ p0, p1, . . . , p9]T and using thenl × 10

matrix M with rows corresponding to grid points, i.e., thel th row

Ml =
[
1, hi (l ), kj (l ), h

2
i (l ), hi (l )kj (l ), k

2
j (l ), h

3
i (l ), h

2
i (l )kj (l ), hi (l )k

2
j (l ), k

3
j (l )

]
,

we find that for a given grid functionU , the coefficients of the weighted least squares fit poly-
nomial are given byP = (MT W2M)−1MT W2RU. In the explicit jump immersed interface
framework, the grid functionU is not known but has to satisfy jump conditions. These can
be expressed conveniently using rows of the matrixD = S(MT W2M)−1MT W2R, where
S= diag(1, 1, 1, 2, 1, 2, 6, 2, 2, 6). This is true becausep was derived with origin(xα, yα),
so function values and derivative values ofU at the boundary point are approximated as
follows:

u(xα, yα) = p0+O(h4),

ux(xα, yα) = p1+O(h3),

uy(xα, yα) = p2+O(h3),

uxx(xα, yα) = 2p3+O(h2),

uxy(xα, yα) = p4+O(h2),

uyy(xα, yα) = 2p5+O(h2),

uxxx(xα, yα) = 6p6+O(h),
uxxy(xα, yα) = 2p7+O(h),
uxyy(xα, yα) = 2p8+O(h),
uyyy(xα, yα) = 6p9+O(h).

For example, a condition on the directional derivative normal to the boundary can be written
in terms ofcD2+ sD3, where(c, s) is the unit normal andD2 andD3 are the second and third
rows ofD, respectively, which correspond to taking thex andy derivatives ofU at(xα, yα).

4.3.2. Remarks on Interpolation

Lorentz [17] discusses analytic conditions under which quadratic interpolation on six
points in 2D is possible; this is used in [36]. Similar limitations hold for third-order interpo-
lation on 10 points. We found it easiest to deal with this issue numerically, independently of
the number of points in the stencil. WheneverMT W2M is singular or close to singular, we
know that the geometry results in a bad stencil and revert to a second-order weighted least-
squares fit. If that fails also, we revert to first order. Since derivatives are needed to enforce
traction boundary conditions, first order is the minimum that we need to be able to use. If
MT W2M is singular even in that case, then a finer mesh is needed to resolve the geometry.

4.4. Corrections for Laplacian and Cross Derivatives toO(h2)

Consider the situation of an interface0 in the neighborhood of the point(xi , yj ) as seen in
Fig. 4. Similar to Peskin’s (first order) immersed boundary method, we consider the discon-
tinuity along an interface as being “spread onto a grid.” The difference is that we are guided

2 The notation diag(vector) indicates a square diagonal matrix with the vector on the diagonal.
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FIG. 4. Interface and mesh geometry near a lattice point(xi , yj ). Five intersections of the interface and the
mesh affect the discretization of linear elastostatics for the point(xi , yj ); they are labeledα1, α2, . . . , α5.

by “sharpness,” i.e., to achieve the smallest possible influence stencil, and we want to achieve
the highest possible order of the truncation error—hereO(h2) for all terms that need to be
discretized in 2D linear elastostatics, extending the derivations in [36], which wereO(h).

4.4.1. The Laplacian

As in [36], discontinuities along0, imposed atα1, α2, α3, α4, andα5, lead to the following
corrections for the Laplacian at(xi , yj ):

1u(xi , yj ) = u(xi+1, yj )+ u(xi−1, yj )+ u(xi , yj+1)+ u(xi , yj−1)− 4u(xi , yj )

h2

− 1

h2

3∑
m=0

(h+3 )
m

m!

[
∂mu

∂m
x

]
α3

− 1

h2

3∑
m=0

(k+4 )
m

m!

[
∂mu

∂m
y

]
α4

− 1

h2

3∑
m=0

(k+2 )
m

m!

[
∂mu

∂m
y

]
α2

+O(h2).

The only other grid point where the jumps atα3 enter the discretization of the Laplacian is
the second neighboring grid point,(xi+1, yj ):

1u(xi+1, yj ) = u(xi+2, yj )+ u(xi , yj )+ u(xi+1, yj+1)+ u(xi+1, yj−1)− 4u(xi+1, yj )

h2

− 1

h2

3∑
m=0

(h−3 )
m

m!

[
∂mu

∂m
x

]
α3

+O(h2).
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This is true in general: For the discretization of the Laplacian, every intersection of interface
and mesh only affects its nearest two grid neighbors.

4.4.2. Cross Derivatives

For the discretization ofuxy = ∂2/∂x∂y, think of

uxy(xi , yj ) = 1

2

u(xi+1,yj+1)− u(xi−1,yj+1)

2h − u(xi+1,yj−1)− u(xi−1,yj−1)

2h

2h

+ 1

2

u(xi+1,yj+1)− u(xi+1,yj−1)

2h − u(xi−1,yj+1)− u(xi−1,yj−1)

2h

2h
+O(h2). (23)

In the case of smooth functions, we simply add the same terms, but in the presence of an
interface, the difference approximations require different corrections. In the case illustrated
in Fig. 4 we break the corrections into pieces:

ux(xi , yj+1) = u(xi+1, yj+1)− u(xi−1, yj+1)

2h
− 1

2h

3∑
m=0

(h−5 )
m

m!

[
∂mu

∂xm

]
α5

+ 2

2h

h3

6
uxxx(xi , yj+1)+O(h3)

and

ux(xi , yj−1) = u(xi+1, yj−1)− u(xi−1, yj−1)

2h
− 1

2h

3∑
m=0

(h−1 )
m

m!

[
∂mu

∂xm

]
α1

+ 2

2h

h3

6
uxxx(xi , yj−1)+O(h3).

Also,

uxy(xi , yj ) = ux(xi , yj+1)− ux(xi , yj−1)

2h
− 1

2h

2∑
m=0

(k+4 )
m

m!

[
∂m+1u

∂x ∂ym

]
α4

− 1

2h

2∑
m=0

(k+2 )
m

m!

[
∂m+1u

∂x ∂ym

]
α2

+O(h2).

Hence

uxy(xi , yj ) = u(xi+1, yj+1)− u(xi−1, yj+1)

4h2
− u(xi−1, yj+1)− u(xi−1, yj−1)

4h2

− 1

2h

2∑
m=0

(k+4 )
m

m!

[
∂m+1u

∂x ∂ym

]
α4

− 1

2h

2∑
m=0

(k+2 )
m

m!

[
∂m+1u

∂x ∂ym

]
α2

− 1

4h2

3∑
m=0

(h−1 )
m

m!

[
∂mu

∂xm

]
α1

− 1

4h2

3∑
m=0

(h−5 )
m

m!

[
∂mu

∂xm

]
α5

+ h

12
uxxx(xi , yj+1)− h

12
uxxx(xi , yj−1)+O(h2).
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Now useuxxx(xi , yj+1) = uxxx(xi , yj )+ [uxxx]α4 +O(h) and uxxx(xi , yj−1) = uxxx(xi ,

yj )+ [uxxx]α2 +O(h) and get

uxy(xi , yj ) = u(xi+1, yj+1)− u(xi−1, yj+1)

4h2
− u(xi+1, yj−1)− u(xi−1, yj−1)

4h2

− 1

2h

2∑
m=0

(k+4 )
m

m!

[
∂m+1u

∂x ∂ym

]
α4

− 1

2h

2∑
m=0

(k+2 )
m

m!

[
∂m+1u

∂x ∂ym

]
α2

− 1

4h2

3∑
m=0

(h−1 )
m

m!

[
∂mu

∂xm

]
α1

− 1

4h2

2∑
m=3

(h−5 )
m

m!

[
∂mu

∂xm

]
α5

+ h

12

[
∂3u

∂x3

]
α4

− h

12

[
∂3u

∂x3

]
α2

+O(h2).

For the second term in (23), we find in a similar fashion

uxy(xi , yj ) = u(xi+1, yj+1)− u(xi+1, yj−1)

4h2
− u(xi−1, yj+1)− u(xi−1, yj−1)

4h2

− 1

2h

2∑
m=0

(h+3 )
m

m!

[
∂m+1u

∂y ∂xm

]
α3

+ h

12

[
∂3u

∂x3

]
α3

+O(h2).

Comparing with (23), intersectionα1 affects the second inner difference in the first term,
α2 affects the outer difference in the first term,α3 affects the outer difference in the second
term,α4 affects the outer difference in the first term, andα5 affects the first inner difference
in the first term.

Averaging terms in (23) has the effect of not giving preference to either thex- or y-
direction, and allows a uniform treatment for all intersections. Every intersection always
affects six grid points. The relative geometry of the six points depends only on whether the
intersection occurs for a horizontal or vertical mesh line. The corrections are needed in four
“inner differences” and two “outer differences.” The horizontal and vertical case each split
up into two cases, depending on which of the nearest grid neighbors of the intersection lies
in Ä+. For example, interface–grid intersectionα3 affects the discretization of∂2/∂x∂y
at the points(xi+1, yj−1), (xi+1, yj ), (xi+1, yj+1), (xi , yj−1)(xi , yj ), and (xi , yj+1), and
intersectionα4 affects the discretization of∂2/∂x∂y at the points(xi−1, yj ), (xi−1, yj+1),
(xi , yj ), (xi , yj+1), (xi+1, yj ), and(xi+1, yj+1).

Remark 4.1. In the case that an intersection coincides with a grid point, this point should
be thought of as belonging toÄ− orÄ+, with intersections chosen accordingly.

Remark 4.2. Through our implementation we have found that the solutions may depend
more smoothly on the geometry if we change the equations for exterior grid neighbors of
the boundary from “corrected linear elastostatics” to “fix the value to zero.” To be able to
use the fast solver from [34], this has to be implemented as a perturbation of the standard
stencil as described in [36].

4.5. Finding the Displacements Using an Elastostatic Solver

Recall that boundary conditions on∂Ä are realized through jump conditions insideR.
If the jumps were known, only the right-hand side of the system of linear elastostatics on
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R would need to be modified, according to the formulas in Section 4.4. To take advantage
of this fact the unknown jumps at the intersections of boundaries and mesh are introduced
as auxiliary variables. The jump conditions (c.f. Sections 4.1 and 4.2) are discretized based
on grid values of the displacements. For known grid functionsU = (U T ,VT )T , the jumps
can be found simply by appropriately differencing the grid functions (c.f. Section 4.3).
Symbolically, the system is thus

(
A 9

D I

)(
U
J

)
=
(

F1

F2

)
.

HereU denotes the vector of stacked grid functionsU andV , J is the vector of jumps,A is
the matrix for the discretization of linear elastostatics by centered differences with normal
boundary conditions, (5) and (6) onR, 9 is the matrix that distributes the jumps to the
equations with appropriate coefficients (Section 4.4),D takes appropriate finite differences
on the grid functions (Sections 4.3, 4.1, 4.2), andI is an appropriately sized identity matrix.
The first row in the above system discretizes the differential equation onR, the second row
is the discretization of the jump conditions. Given jumps correspond to zero rows inD and
nonzero entries on the right-hand sideF2.

EliminatingU from the system using

U = A−1(F1−9J), (24)

we find a system for the jumps,

D A−1(F1−9J)+ J = F2;

that is,

(I − D A−19)J = F2− D A−1F1. (25)

This Schur complement for the jumps is solved iteratively with GMRES [23] or BiCGSTAB
[32], conjugate gradient methods for nonsymmetric matrices. An iterative method is needed
becauseA−1 is not known, but it can be applied rapidly inO(n logn) using a fast elasto-
static solver [34]. To make efficient use of the solver, the number of mesh points in each
direction (after reflection, see [34]) should be a power of 2. Once the jumps are known,
the displacement vectorU is found applying the fast elastostatic solver one more time to
evaluate (24).

Remark 4.3. This is the application of Schur-complement methods for Poisson prob-
lems on irregular domains from [36] (based on earlier work by Buzbeeet al. [9] and the
capacitance matrix method by Proskurowski and Widlund [20], also used by Yang [38]) to
the elastostatic equations.

4.6. The Idea of the Fast Elastostatic Solver

The fast solver that appliesA−1 in (25) requiresO(N log N) operations to solve the
elastostatic equations (1), (2) on a rectangle with normal boundary conditions, (5)–(6). It
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is based on the formulas for periodic boundary conditions. Forc > 0, 1≤ k ≤ N1 and
1≤ m≤ N2, butkm> 1,

Ūk,m =
dk,mF̄u

k,m − bk,mF̄v
k,m

ak,mdk,m − b2
k,m

h2, (26)

V̄k,m =
ak,mF̄v

k,m − bk,mF̄u
k,m

ak,mdk,m − b2
k,m

h2, (27)

whereN1 andN2 are the numbers of grid points in the horizontal and vertical directions,
bars on capitalized variables indicate the two-dimensional Fourier transform and

ak,m = −4c− 2+ 2(c+ 1) cos
2π(k− 1)

N1
+ 2ccos

2π(m− 1)

N2
,

bk,m = − sin
2π(k− 1)

N1
sin

2π(m− 1)

N2
,

dk,m = −4c− 2+ 2ccos
2π(k− 1)

N1
+ 2(c+ 1) cos

2π(m− 1)

N2
.

Due to the periodic boundary conditions we have to require that each component of the
right-hand side sum to zero, and after that the solution is unique only up to two constants.
The problem with normal boundary conditions is solved using the solution for periodic
boundary conditions on a larger problem that results from reflecting the right-hand side as
follows:

f u f v fu fv

f u f
v

fu f
v

-

- - -

This reflection naturally satisfies the condition that each component of the right-hand side
has to sum to zero. The undetermined constants arising from the solution of the periodic
problem are both set to zero in order to match the displacement boundary conditions. Finally,
the solution of the problem with normal boundary conditions is just the upper left block of
the solution of the problem with periodic boundary conditions. A careful implementation
[35] requires a sequence of one-dimensional FFTs on appropriately once-reflected (doubled)
data structures and thus avoids the quadrupling described in [34].

For further details of the fast solver we refer to [34].

5. STRUCTURAL BOUNDARY DESIGN

So far, we have discussed techniques for computing the stresses given a particular design
configuration. Our goal is to find the design that minimizes the total amount of material
and keeps the compliance below a certain value, subject to loading and clamping boundary
conditions. This is a constrained minimization problem; the constraint is the compliance,
and the goal is to minimize the amount of material used in the design.
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In many situations the solution of such a problem is not unique. An additional problem is
that there may be many local minima, designs for which any small perturbation that satisfies
the constraint require more material, yet the given shape is not the global minimum.

Our approach is an evolutionary one; see, for example, [37]. The principal idea is to
remove material in regions of low stress and to add material in regions of high stress. We
establish a removal rateRR which determines a percentage of the maximal initial stress
below which material may be eliminated, and above which material should be added. The
removal rate determines the closed stress contours along which new holes are cut and also
the velocity of the boundary motion. It is increased only after no new holes are cut, and
the design boundaries have stabilized. When the constraint is violated, the removal rate is
decreased in order to add more material in regions of high stress and remove less material
in regions of low stress. The lowered stresses are empirically seen to result also in lower
values for the compliance. We terminate when this procedure cannot improve the weight
while satisfying the compliance any more. Formally, we proceed as follows:

MAIN ALGORITHM .

1: Initialize; find stresses in initial design.
2: While termination criteria are not satisfied do
3: Cut new holes.
4: Move boundaries.
5: Find displacements, stresses, etc.
6: If the constraints are violated reduceRRand revert to previous iteration.
7: UpdateRR.

In order to execute this technique, we must accurately move the boundaries based on
the stresses computed for the current design. It is important that this reconfiguration allow
holes to merge, new holes to be cut, and the shape to continuously change topology under
the trial motions. These requirements are handled well by level set methods, which we now
briefly discuss. For more details, see [28, 29].

5.1. Brief Review of Level Set Methods

Level set methods were introduced by Osher and Sethian [19] and offer highly robust
and accurate methods for tracking interfaces moving under complex motions. They grew
out of the theory of curve and surface evolution developed by Sethian in [24–26], which
constructs the notion of weak solutions and entropy limits for evolving interfaces, and
links upwind numerical methodology for hyperbolic conservation laws to front propagation
problems. The resulting level set approach works in any number of space dimensions,
handles topological merging and breaking naturally, and is easy to program.

The level set method works by embedding the interface as the zero level set of a higher
dimensional function. More precisely, given a moving closed hypersurface0(t), that is,
0(t = 0) : [0,∞)→ RN , propagating with a speedF in its normal direction, we wish to
produce an Eulerian formulation for the motion of the hypersurface propagating along its
normal direction with speedF , whereF can be a function of various arguments, including
the curvature, normal direction, etc. Let±d be the signed distance to the interface. If we
embed this propagating interface as the zero level set of a higher dimensional functionφ,
that is, letφ(x, t = 0), wherex ∈ RN is defined by

φ(x, t = 0) = ±d, (28)
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then an initial value partial differential equation can be obtained for the evolution ofφ,
namely

φt + F |∇φ| = 0 (29)

φ(x, t = 0) given. (30)

This is known as the level set equation, introduced in [19] by Osher and Sethian. As
discussed in [24–26], propagating fronts can develop shocks and rarefactions in the slope,
corresponding to corners and fans in the evolving interface, and numerical techniques
designed for hyperbolic conservation laws can be exploited to construct upwind schemes
which produce the physically correct entropy solution.

The above formulation in fact revealstwo central embeddings, each of which can be
handled by computationally efficient algorithms.

5.1.1. The Level Set Embedding

First, in the initialization step (28), the signed distance function is used to build a function
φ which corresponds to the interface at the level setφ = 0. This step is known as “initial-
ization;” when performed at some later point in the calculation beyondt = 0, it is referred
to as “reinitialization.” The need for reinitialization in level set methods was first discussed
by Chopp in his work on minimal surfaces; see [11].

The algorithm for the level set equation (29) given in [19] uses upwind schemes based on
an ENO-construction. As discussed in that paper, the level set equation is solved throughout
the entire computational domain. This is impractical and inefficient. The algorithm becomes
computationally efficient through the use of anarrow band level set method, introduced
by Adalsteinsson and Sethian [1], which confines computation to a narrow band around
the interface of interest. The narrow band is of user-specified size. As the front moves and
reaches the edge of the narrow band, the calculation is stopped, and a new initial level
set function corresponding to the signed distance function is rebuilt. A very large narrow
band means that one is essentially computing everywhere, and this reinitialization is never
performed. A very thin narrow band means that one is computing only very close to the
front, and hence reinitializing every time step. The numerical tests reported in [1] indicated
that a narrow band of a particular size (around 6–10 grid points on each side of the front)
seems to be the correct balance between work spent updating points in the band and work
spent doing reinitialization.

5.1.2. The Velocity Embedding

Second, the construction of the initial value PDE given in (29) means that the velocityF
is now defined forall the level sets, not just the zero level set corresponding to the interface
itself. We can be more precise by rewriting the level set equation as

φt + Fext|∇φ| = 0 (31)

whereFext is some velocity field which, at the zero level set, equals the given speedF . In
other words,

Fext = F onφ = 0

This new velocity fieldFext is known as the “extension velocity.”
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In [2], Adalsteinsson and Sethian introduce a very fast technique for constructing this
extension velocity, through the use of fast marching methods [27], which are computational
techniques for solving the Eikonal and related equations and rely on upwinding, causality
principles, and heap sort techniques. The idea is as follows. Desirable properties of an
extension velocity are that it should match the given velocity on the front itself, and that
it should move the neighboring level sets in such a way that the signed distance function
is preserved. Consider for a moment an initial signed distance functionφ(x, t = 0), and
suppose one builds an extension velocity of the form (see [10])

∇Fext · ∇φ = 0. (32)

It can be shown that the level set functionφ remains the signed distance function for all
time, assuming that bothF andφ are smooth. Adalsteinsson and Sethian solve (32) in
O(N log N) time, whereN is the total number of points where one wants to create this
extension velocity. As such, it is a very efficient technique, and is warranted when a velocity
is given only on an interface and must be extended throughout the narrow band in order to
apply the level set update.

5.2. Using the Narrow Band Level Set/Fast Marching Methods
in Structural Boundary Design

By convention, the interior of the structure is labeled “negative,” the outside “positive.”
In the narrow band, we maintain the distance from the structure boundaries; on the rest
of the computational domain, we keep track only of the sign of the distance function (in
addition to the fact that we are outside of the narrow band). Several extensions of the basic
narrow band level set method with extension velocities are required in structural boundary
design.

5.2.1. Cutting New Holes

A new hole is cut in the interior of the structure by computing its distance function in
its own narrow band (with positive label inside the hole) and then taking the maximum of
the two distance functions on the intersection of the narrow bands for the structure and the
hole. On the nonintersecting parts of the narrow bands the distances are maintained. The
union of the two narrow bands is the narrow band for the resulting structure.

5.2.2. Hanging Nodes

Hanging nodes occur when the boundary motion severs part of the structure from the
nontrivial boundary conditions. Fig. 5a) shows a domain with three holes that merge into
one hole, Fig. 5b). After the motion, two small islands of material are left inside the resulting
hole.

In structural boundary design, subdomains that become disconnected from the nontrivial
boundary conditions should be removed from the computations. Practically, they are not
relevant and computationally, they become independent underdetermined subproblems. We
detect and remove the disconnected component as follows. After the motion, we find the
components of the zero contour of the distance function “from the outside toward the inside,”
starting with the exterior boundary. From these, we rebuild a distance function. Hanging
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FIG. 5. A domain with three holes (a) that merge into one (b). After the motion, two small islands of material
are left inside the resulting hole. They have to be removed from the computations.

nodes are recognized as being cut into the “outside” portion of the structure based on the
sign of the partially rebuilt distance function and ignored in the distance rebuilding phase.

5.2.3. Stabilization of Boundaries

We do not cut new holes or change the removal rate for a few design steps after cutting
one or more new holes, merging holes or after a change in the removal rate, because we
observed that stress values immediately after these operations were not as reliable as under
a stable boundary motion.

Another form of stabilization is symmetrization. For many of the problems in this paper,
the structure geometry should remain symmetric due to the symmetry of the clamping and
loading conditions. We found that unless we enforce this symmetry, ultimately roundoff
errors lead to the departure from this symmetry. Since in our cases the symmetry axis is
usually aligned with a coordinate axis, we can simply symmetrize the geometry by averaging
distance values on the sides of the symmetry axis.

5.2.4. Velocities from Stresses

Recall that we solve for the displacements and difference them to find the (symmetric)
stress tensor, with Lam´e constantsµ andλ,

σ = µ(∇u+∇uT )+ λ trace(∇u)I .
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From the stress tensor, we calculate the von Mises stress as

S=
√
σ 2

11+ σ 2
22− σ11σ22+ 3σ 2

12.

We extend the von Mises stress from the grid to the boundaries by the least squares ex-
trapolation method from Section 4.3. In principle, for every component of the boundary
the parameters of motion may be chosen separately, based for example on the maximal and
minimal values of the stress on that component. In the examples in this paper, we distin-
guish only between the exterior boundary and hole boundaries. Five parameters describe
the boundary motion.

1. s, a lower bound below which the boundary moves to reduce the structure with maximal
speed.

2. S, an upper bound below which the boundary moves to grow the structure with max-
imal speed.

3. s̄ and S̄ with s< s̄< S̄< S create an interval of stress values [s̄, S̄] in which the
boundary does not move—an interval is needed to avoid shearing the boundary. By rescaling
the intervals [s, s̄] and [S̄, S] to the interval [0, π ] and using±(1+ cos)/2 on this interval
we arrive at theC1 velocity profile depicted in Fig. 6. This profile is scaled to have maximum
absolute value 2h/5 to automatically satisfy a CFL condition.

4. The number of steps taken to advance the front. The velocity is chosen so that a single
step is always allowable. To achieve similar motion on a different grid the number of steps
has to be scaled inversely proportional to the change in mesh width.

FIG. 6. The velocity profile fors= 10, RR≈ s̄= 20, S̄= 23, andS= 32. The speed is at most one to allow
mesh-dependent scaling and automatic handling of a CFL condition in the level set motion.
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FIG. 7. Values of velocity extension are only assigned inside the narrow band. In the shaded regions, the
velocity is constant and equal to the value at the corner. In the other regions, the values are the same as on the
nearest point in the polygon, where in turn the values are obtained by linear interpolation between the values at
the corners.

5.2.5. Velocity Extension

In the implementation, we extrapolate from grid points inside the structure to get stress
values at the corners of a polygon whose corners results from calculating the intersections
of the zero level set with the mesh lines of the level set mesh. From the stress values,
we calculate the velocities at these points. All grid points inside the narrow band inherit
the velocity from the nearest polygon point, with linear interpolation of velocities in the
polygon segments. Figure 7 illustrates this procedure. At the corners, where the normal
does not exist, the extension is different on the two sides of the polygon. On the side with
the acute angle, the extension arrives from the interior of the polygon segments. On the side
with the obtuse angle, there exists a region where the velocity is extended by the constant
value from the corner point.

5.2.6. Fixing Boundaries

The level set representation also allows inhibiting the motion of parts of the boundary.
Following a suggestion by Adalsteinsson, we simply copy values prior to the motion in
regions that should not move. Similarly, it it possible to select only inward motion or
outward motion on part of the domain by simple operations (e.g., max(F, 0), etc.) on the
extended velocity on the grid.
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5.2.7. Choosing Parameter Values

The final geometry found by our procedure depends on the choices of many parameters.
This is typical for nonconvex optimization problems and is not unique to our approach.
For example, it was observed also for the reverse adaptivity approach [21]. A typical value
for the intial removal rate is between 0.01 and 0.1, the update is usually 0.01 or 0.025.
The lower and upper bounds for the velocity typically ares= 0, s̄= RR, S̄= 1.1s̄ and
S= min(5.5s̄, Smax), whereSmax is the maximal stress in the initial design. The constraint
on the compliance and on the maximal stress can be chosen arbitrarily. We terminate, for
example, when a new design achieved under motion ofRR= 0.01 does not satisfy the
constraint anymore.

5.3. Using the Immersed Interface Method in Structural Boundary Design

5.3.1. Solving the PDE When the Structure Becomes “Narrow”

Geometries may arise in which the discretization to second order is not possible because
there are not enough grid points inside the structure. This is the case especially for truss-
like structures, where hole boundaries are close together and parallel over a length of three
times the mesh size or more. To deal with these cases correctly, one could use a finer
grid that resolves the geometry with enough grid points in the structure. But this is costly,
especially when large parts of the domain are not yet truss-like. Alternatively, we can avoid
the troublesome geometries using morphological operations suggested by Sarti. By eroding
(shrinking) the structure byH and then dilating (growing) it by the same amount, we make
sure that all trusses after this operation have width at least 2H . To see this, note that in
general, the structure changes very little under these operations. However, where a long,
narrow truss of width less than 2H was originally present, the erosion has removed it, and
dilation cannot recreate it.

Figure 8 shows a rectangular cantilever with three holes on the computational grid.
Erosion leads to the light gray gray boundaries, and dilation returns the boundaries to the

FIG. 8. Erosion and dilation remove the narrow truss between the two elongated ellipses, while all other
boundary portions remain almost unchanged. The boundary motion is carried out on a different grid of half the
shown meshwidth.
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original locations except for a little rounding of the corners and in the narrow region between
the two ellipses that is too narrow for the discretization.

5.3.2. Grid Crossing

For any fixed geometry, the explicit jump immersed interface method converges with
O(h2), but this says nothing about the quality of the solution when the grid is kept fixed and
the boundary geometry is modified. In structural boundary design, whenever a boundary
crosses a grid point, this point “enters” or “leaves” the structure and is newly used in the
computation of the stresses or dropped from this computation. In this situation, the computed
displacements and stresses may change discontinuously, even though the boundary motion is
perfectly smooth. To improve this behavior, we abandon the six-point stencil approach from
[33, 36] and use the weighted least squares from Section 4.3. This dramatically improves
the “continuous” dependence of the computed stresses on the boundary shape.

6. NUMERICAL EXAMPLES

The examples in this section treat three different issues.

1. Our implementation of the explicit jump immersed interface method for the Lam´e
equations finds displacements with second order accuracy on arbitrary domains with dis-
placement and traction boundary conditions.

2. With a Schur-complement technique, the fast solver for rectangles from [34] can be
used for problems on irregular domains as well. Our implementation scales likeO(N log N),
just as the solver for rectangles.

3. The narrow band level set method can be used to alter the shape and topology of the
structure, with velocities depending on the stresses in the current design. We recover the
solution of a well-studied short cantilever example and show that our rules of stress and
weight reducing design lead to truss-like structures.

6.1. Second-Order Convergence for the Lam´e Equations

The following radially symmetric example was first studied in the pure loading case by
Lamé which can also be found in the books of Murnaghan [18] and Timoshenko [31].

Consider (1) and (2) on the annulusr1 < r < r2; see Fig. 9. Clearly

u = sr1
(
C(x2+ y2)+ r 2

2

)(
r 2

2 + Cr2
1

)
(x2+ y2)

x,

v = sr1
(
C(x2+ y2)+ r 2

2

)(
r 2

2 + Cr2
1

)
(x2+ y2)

y

satisfy the elastostatic equations (1), (2) withf u = f v = 0. The displacementsu andv also
satisfy the displacement boundary conditions (3)

u = s

r1
x,

v = s

r1
y
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FIG. 9. The annulus 0.15= r2 < r < r1 = 0.35, centered at(0.503, 0.495). The choice of center avoids
symmetry of the domain with respect to the partially shown computational grid (h = 0.025). On the outer boundary,
a displacement in the normal direction of lengths is indicated by the dashed circle. The displacement on the
traction-free inner boundary is indicated by the heavy circle.

on the inner boundary{x2+ y2 = r 2
1} and a traction-free boundary condition ((4) with

g= 0) on the outer boundary{x2+ y2 = r 2
2}.

Figure 10 shows the analytic solution (fors= 0.02,r1 = 0.35,r2 = 0.15 andC = 1/3;
on a polar grid for visualization only). To test how well we can recover the symmetry of
the solution on a Cartesian grid, we have shifted the origin to the point (0.503, 0.495). The

FIG. 10. Wire frame of the length of displacement of the exact solution (forC = 1/3, r1 = 0.35,r2 = 0.15,
s= 0.02 centered at (0.503, 0.495)) evaluated on a polar grid.
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FIG. 11. The maximum error over the displacements forn = 20, 30, 40, . . . ,160. The affine least squares
fit indicates convergence withO(h1.7). Here the original 6-point stencil selection (see [36]) was used. The scatter
shows significant influence of the mesh–boundary geometry.

computational grids are uniformly spaced withn− 1 interior grid points and mesh width
h = 1/n in the unit square [0, 1]× [0, 1].

Figures 11–13 display values for the maximum error of the displacement over all grid
points inside the annulus as the mesh is refined, withn = 20, 30, 40, . . . ,160 points in each
direction. Figure 11 shows results for the original 6-point stencil selection scheme, Figure
12 shows results for biquadratic weighted least squares extrapolation, and Fig. 13 shows the
results for bicubic weighted least squares extrapolation. We observe second-order reduction
of the error in the maximum norm in all figures, but much more uniform behavior for the
least squares fit, with slightly better results for the cubic fit. Figure 14 contains scatter plots
that show the length of displacement as a function of the distance of a grid point from the
point (0.503, 0.495). As the grid is refined forn = 20, 40, 80, 160, the radial symmetry of
the solution is recovered.

FIG. 12. Maximum error as in Fig. 11, but for biquadratic least squares interpolation. The affine least squares
fit indicates convergence withO(h2.4). The scatter of the errors is significantly reduced.
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FIG. 13. Maximum error as in Fig. 11, but for bicubic least squares interpolation. The affine least squares fit
indicates convergence withO(h2.5), slightly better than for the biquadratic fit.

6.2. TheO(N logN) Solution Method

The fast solver that is outlined in Section 4.6 is used to applyA−1 in the Schur-complement
inside GMRES or BiCGSTAB iterations. For large problems and/or high required accuracy,
we find that BiCGSTAB is preferable because it requires less memory and the convergence
of restarted GMRES is not very fast. However, becauseA−1 is applied four times per

FIG. 14. Scattering of length of displacement values forn = 20, n = 40, n = 80, andn = 160. The first plot
also shows the exact solution as a function of the radius. As the grid is refined, the symmetry of the exact solution
is fully recovered.
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TABLE I

Performance of BiCGSTAB for the Structure in Fig. 2

N Iterations Flops Flop ratio Mflops Seconds Time ratio

39× 79× 2 36 2.7e09 — 77 3.5e1 —
79× 159× 2 49 3.4e10 12.6 148 2.3e2 6.6

159× 319× 2 48 1.8e11 5.3 164 1.1e3 4.8
319× 639× 2 60 6.8e11 3.8 145 4.7e3 4.3
639× 1279× 2 81 4.4e12 6.5 126 3.5e4 7.4

BiCGSTAB iteration and only once per GMRES iteration, for problems that we can solve
with GMRES without restarting, GMRES is the preferred method.

Figure 2 shows the stress contour lines of an elastic structure that is loaded and clamped
as indicated in Fig. 1. The perforated rectangle is embedded in a larger rectangle, the
computational domain, which is indicated in light gray in both figures. The same problem
was solved on grids with 40× 80, 80× 160, 160× 320, 320× 640 and 640× 1280 points.
The stresses in Fig. 2 were found on the 160× 320 grid, but on the other grids the results
were similar, with convergence under refinement. Because the largest problem requires
BiCGSTAB in order to reside in the memory of our SUN workstation without swapping,
we have used it even for the smaller problems where GMRES would apply in order to be able
to compare the results. Table I establishes that also on irregular domains the operations and
time required to solve the problem scale likeO(N log N) and that we can use this method to
solve medium-sized problems on workstations. For each problem size, we have reduced the
residue by six orders of magnitude. This ensured that the number of iterations was similar
for all problems sizes and that we could compare the amount of work performed. In order to
really benefit from the higher resolution, one should reduce the residue even further for the
larger problems. The odd numbers of interior grid points were chosen to be able to compare
point values with the finest grid. This means that the prime factorizations and hence the
efficiency of the FFT vary, but growth likeO(N log N) is observable nontheless.

6.3. Structural Boundary Design via Level Set and Immersed Interface Method

6.3.1. Stress, Weight, and Compliance Reduction

The cantilever in Fig. 15 is clamped and loaded in the same fashion as indicated in Fig. 1.
High stresses occur at the inner endpoints of the clamped boundary portions and at the
inward corners. This behavior is typical in elasticity, and the rounding of such corners is
known as filleting.

Here, we show that our approach is able to find good fillets while at the same time reducing
the compliance and the weight of the structure. We do not claim to reach an optimum, but
believe that the reduction of the maximal stress at the fillet by 60%, reduction of compliance
by 20% and reduction of weight by 10% together with the simplicity of the design rules are
practically relevant.

As the homotopy parameter, we have arbitrarily chosens̄ as 20% of the maximal von
Mises stress in the initial design in Fig. 15. The corresponding contour is fattened in
Figs. 15–17. We allow outward motion (i.e., for stress aboves̄) in a neighborhood of the
initial corners and cut one hole along a contour of low stress. This hole is then allowed
to grow on portions of its boundary that are stressed belows̄. In principle, the hole could
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FIG. 15. Stress contours in the initial design. The dark curves represent the 20% contour of the maximal
initial stress.

shrink as well, but the stresses on its boundary do not reach the point where shrinking would
occur. Cutting the hole allows us to design a cantilever with less weight than the original
one even though we add material in the corners.

After 10 design steps, with shape seen in Fig. 16, the stress in the fillets has been reduced
by 50%. Now the growth of the hole drives further changes in the fillet shape until that also
stabilizes at the shape in Fig. 17. The fillet shape that develops is similar to that found by
Xie and Stevens [37], but note that we achieve it by the opposite procedure. Rather than
removing material from a ground structure, we add material where the stresses are high.
Also, the stress contours are much smoother in the final design than in the initial design. On
the down side, at the inner endpoints of the clamped boundaries, the stress has increased
by 25%.

FIG. 16. The formation of the fillet for the design in Fig. 15 is essentially finished, the hole is still growing.
This growth drives further changes of the fillet. The dark curves represent the 20% contour of the maximal initial
stress.
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FIG. 17. Formation of fillet and hole are finished. The dark curves represent the 20% contour of the maximal
initial stress.

Figure 18 shows the behavior of the maximal stress (maximum taken away from the
clamped and loaded boundary portions) weight, and compliance. They are all scaled to one
at the initial design. The oscillations in the compliance and stress for the later designs are
due to a “ripple motion” as parts of the hole boundary are stressed close to the limit of
outward motion.

FIG. 18. Maximal stress (crosses), compliance (circles), and weight (stars) for the fillet design example from
Figs. 15–17.
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FIG. 19. (a) Clamping, loading, and stresses in the initial design. (b) Stress distribution in an improved design
close to the pin-jointed two-truss solution.

6.3.2. Constrained Design of a Short Cantilever

A cantilever of ratio 1 : 3 is clamped everywhere on the left boundary and vertically
loaded on the mid 6% of the right boundary. The rest of the right boundary and the top and
bottom boundaries are traction free, as indicated in Fig. 19.

This problem was chosen because it is a standard test problem for structural boundary
design (used, e.g., in [37, 21]), with a known solution for a simpler pin-jointed two-truss
problem [22]. The optimal height in that case is twice the width of the structure.

Figure 19a also shows the distribution of the von Mises stress in the original design.
Figure 19b shows an improved geometry close to the two-truss solution and stress distri-
bution inside. We have almost achieved a fully stressed design. Except for the left, built-in
edge, the cantilever is stressed to at least 40% of the maximal stress of the initial design.

We consider the problems of improving the weight of the cantilever for three different
constraints on the compliance. The constraints are 1.2, 2.0, and 10.0 times the compliance
of the “full” design from Fig. 19. Improved designs are seen in Figs. 20a–20c. It is clear
that the shape depends very much on the constraint, and a more lenient constraint allows
the use of less material.

Figure 21a shows the evolution of the weight (circles) and compliance (crosses) for the
constraint at 2.0. Simple control of the homotopy parameter based on constraint violation
leads to a nonmonotone decrease of the weight, but allows significant changes in shape
when the constraint is reached and the homotopy parameter is decreased.

Figure 21b shows the number of GMRES iterations needed for the different designs. The
iteration count is always in the same range, with a slight increase as the geomerty of the
design becomes more complicated.
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FIG. 20. Improved designs for various constraints on the compliance. (a) 1.2, (b) 2.0, and (c) 10 times the
compliance of the initial design in Fig. 19.

6.3.3. Design of a Long Cantilever from a Perforated Structure

A cantilever of ratio 2 : 1 is built in near the top and bottom of the left edge and centrally
loaded on 5% of the right hand edge. The rest of the right-hand edge and the top and bottom
edges are traction free. From theoretical considerations [4, 7], a truss-like structure is
expected to develop for optimal low-weight structures in these conditions. These solutions
have been observed (see Figs. 22–35) based on a rectangular ground structure both in
homogenization, where a weighted sum of weight and compliance are minimized [5]; and in

FIG. 21. (a) Compliance (crosses) and weight (circles) of the sequence of designs leading to the one in
Fig. 20b. (b) Number of GMRES iterations needed to find the stresses in the designs leading to the one in Fig. 20b.
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FIG. 22. Initial Design.

FIG. 23. Design 1.

FIG. 24. Design 2.
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FIG. 25. Design 3.

FIG. 26. Design 4.

FIG. 27. Design 5.
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FIG. 28. Design 10.

FIG. 29. Design 30.

FIG. 30. Design 50.
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FIG. 31. Design 70.

FIG. 32. Design 90.

FIG. 33. Design 110.
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FIG. 34. Design 130.

evolutionary structural optimization, where material below a certain stress level is removed
[22, 37]. Using unconstrained weight reduction by homotopy on the stress, we observe
the same phenomenon based on a perforated ground structure. The homotopy parameter is
initially rather small, so that the small holes tend to disappear. After the stable configuration
in Fig. 29 is reached, the homotopy parameter is increased slowly and a truss-like structure
develops as more material is removed.

7. CONCLUSION AND OUTLOOK

We have presented a numerical algorithm for structural boundary design. The technique
accurately solves the Lam´e equations and accurately differences the displacements for the
stresses in arbitrary domains. It can be used to find basically optimal solutions to constrained
minimization problems in some simple, well-studied test cases. We expect to extend the
work to three dimensions and more complex situations. A large collection of case studies
and further refinements may be found in [30].

FIG. 35. Design 135.
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